More From The Hidden Life of Trees

More From The Hidden Life of Trees: Urban Trees Courtesy and Copyright Ron Hellstern, Photographer
Urban Trees
Courtesy and Copyright Ron Hellstern, Photographer
In the book, The Hidden Life of Trees, Forester-Scientist Peter Wohlleben reveals some amazing characteristics that are generally unknown by the humans casually walking by the trees in a forest. This is part two highlighting this book and I highly recommend you consider searching for it in bookstores or online.

Wohlleben states that trees communicate with each other by using scents. It seems that various trees can release toxins into their leaves when being eaten by herbivores looking for a meal. But these trees also warned nearby relatives of the same species by releasing gases as a signal they were being invaded. Those neighboring trees quickly pumped those same toxins into their leaves to prevent an oncoming attack.

Mountain Trees Courtesy and Copyright Ron Hellstern, Photographer
Mountain Trees
Courtesy and Copyright Ron Hellstern, Photographer
It was also learned that sometimes trees can identify the insects that are eating their leaves by tasting the saliva being secreted by those attackers. The trees can then release scent-based pheromones to warn neighbors that they are being assaulted, but also summon beneficial insects which then prey upon those original assailants. These new findings imply that trees can determine certain scents, and if they can interpret different insect saliva they must also have a sense of taste.

These warnings to neighboring trees aren’t always carried through the air. Consider days when there is no wind. They can also be sent using chemical signals sent through the fungi around their root tips. Serious problems can occur when trees lose these skills as well as their ability to defend themselves. This is one important reason to maintain undisturbed sections of old-growth forests. Wohlleben also cites a study in Australia when it was observed that the roots of grain seedlings oriented their root tips toward the origin of sound frequencies of 220 hertz. Can trees taste, smell, respond to electrical signals, and hear sounds? It seems incredible, but how much do we really know about trees?

Consider the many benefits trees provide for humanity and other life forms: Of course they can be used for building or fuel, but they can raise property values by as much as 15%; they take in Carbon Dioxide for growth and release Oxygen; they help moderate the climate; they purify the air of toxic substances; they produce fruit and nuts; they provide habitat for insect-eating birds; they provide cooling summer shade and reduce heat-islands in urban settings; they reduce noise levels and light pollution for scenic night skies; they provide soil stability to reduce erosion; and they provide scenic green-screens for privacy. Research has also shown that urban tree areas have lower crime rates, and hospitals report that recovery from physical or mental issues are improved and hastened by having trees in their landscape.

There is much more to learn from the book, The Hidden Life of Trees. And Fall and Spring are the ideal times to plant these quiet, scenic wonders.

This is Ron Hellstern, and I am Wild About Utah.
 
Credits:

Images: Courtesy & Copyright Ron Hellstern
Lead Audio: Courtesy and Copyright
Text: Ron Hellstern, Cache Valley Wildlife Association

Additional Reading

Hellstern, Ron, The Hidden Life of Trees, Wild About Utah, August 26, 2019, https://wildaboututah.org/the-hidden-life-of-trees/

Wohlleben, Peter, The Hidden Life of Trees, Jane Billinghurst, Translator, Greystone Books Ltd., 2016, https://www.amazon.com/Hidden-Life-Trees-Illustrated/dp/177164348X

Wohlleben, Peter, The Hidden Life of Trees – The Illustrated Edition, Jane Billinghurst, Translator, Greystone Books Ltd. 2018, https://www.amazon.com/Hidden-Life-Trees-Illustrated/dp/177164348X

Noe, Alva, A Web Of Trees And Their ‘Hidden’ Lives, National Public Radio, September 23, 2016, https://www.npr.org/sections/13.7/2016/09/23/494989594/a-web-of-trees-and-their-hidden-lives

Kuhns, Michael, https://upcolorado.com/utah-state-university-press/item/2130-a-guide-to-the-trees-of-utah-and-the-intermountain-west

Before Trees, We Had Giant Mushrooms

Mushrooms in the Grass Courtesy MW at Pixabay
Mushrooms in the Grass
Courtesy MW at Pixabay
Yes, trees are the answer. But they owe their magnificence to a less known life form that has long intrigued me. Long before trees overtook the land, Earth was covered by giant mushrooms 24 feet tall and three feet wide. And consider Utah’s Pando aspen clone, one of the largest and oldest, mycorrhizal-dependent, living organisms

Mushrooms are actually the reproductive manifestation of a much larger organism, a brief glimpse of the wonders that reside beneath the ground. Called mycorrhizal fungi, they form a mutually beneficial relationship with tree roots and other plants. They vastly increase the absorption capacity for water and minerals. Many trees and other plants cannot live without these fungal partners. It also makes the plant less susceptible to soil borne pathogens and other environmental stresses such as drought and salinity.

Regarding climate protection, mycelium make up the bulk of carbon storage in forests. Scientists in Sweden were surprised by this; they were expecting dead tree matter to shoulder the carbon burden. But as mycologist Paul Stamets states, “dead mycelium can store carbon for hundreds of thousands of years.

Remarkably, recent research has shown that plants connected by mycorrihzal fungi can use these underground connections to produce and receive warning signals. When a host plant is attacked, the plant signals surrounding plants of its condition. The host plant releases volatile organic compounds (VOCs) that attract the insect’s predators, as do the plants connected by the fungi network.

Further, fungi have been found to have a protective role for plants rooted in soils with high toxic metal concentrations. This is likely due to the metal binding to fungal mycelium.

Taking a broader view, recent research indicates mushrooms possess curative properties for many diseases, including neurological. Add to this bioremediation through cleaning up industrial waste and oil spills, and applications for reducing loss of our pollinators. Critical to soil function as decomposers and providing nutrients, mushrooms also play a major role in soil structure through hyphae networking and glomalin (that is biological glue) production.

The idea that a universal web of dark matter, plus our more familiar World Wide Web, plus the neurological networking in the human brain, all mimicking the mycelial networks of mushrooms under our feet that bind and feed all of Earth’s soil. The idea that this network, an enormous mass of fungus that branches and communicates underground, is in some way sentient. The idea that human brains went through an evolutionary growth spurt after we encountered “magic” mushrooms on the savannah of Africa- all worthy of serious rumination.
Fall has arrived, and with it mushrooms to titillate the imagination- and gastric juices.

This is Jack Greene and boy am I wild about Utah and Pando’s mycelium!

Credits:

Pictures: M W from Pixabay
Sound: Courtesy Kevin Colver
Text: Jack Greene, Bridgerland Audubon Society

Additional Reading:

Pace, Matthew, (Intern, NYBG), Hidden Partners: Mycorrhizal Fungi and Plants, New York Botanical Garden, https://sciweb.nybg.org/science2/hcol/mycorrhizae.asp.html

Chadwick, Douglas H., Mycorrhizal Fungi: The Amazing Underground Secret to a Better Garden. Mother Earth News, August/September 2014, https://www.motherearthnews.com/organic-gardening/gardening-techniques/mycorrhizal-fungi-zm0z14aszkin

See “Mushrooms” in the following:
Cumo, Christopher, Encyclopedia of Cultivated Plants: From Acacia to Zinnia [3 volumes]: From Acacia to Zinnia, Amazon Digital Services LLC, April 25, 2013, https://www.amazon.com/Encyclopedia-Cultivated-Plants-Acacia-volumes-ebook/dp/B00ODJN5BU
See also: https://books.google.com/books?id=Ja7WAQAAQBAJ&q=mushrooms#v=snippet&q=mushrooms&f=false

The Hidden Life of Trees

The Hidden Life of Trees – The Illustrated Edition Peter Wohlleben, Author, Jane Billinghurst, Translator Greystone Books Ltd.
The Hidden Life of Trees – The Illustrated Edition
Peter Wohlleben, Author,
Jane Billinghurst, Translator
Greystone Books Ltd.
Courtesy Greystone Books Ltd.
Occasionally, we run across a piece of art, music, or literature that we want to share with others. That isn’t always the case with beautiful scenery. Sometimes we want to keep that place as a private haven of serenity. And for good reasons.

Today, I will describe something that has opened my eyes to a world that few people know about. I refer to the research revealed in a book titled “The Hidden Life of Trees”, an International Bestseller, by Peter Wohlleben. He is a Forester-Scientist in Germany who has connected with others in his profession for over 20 years to reveal things about trees that most of us would never have expected. Here is Part One:

You may recall the basic photosynthesis functions related to the lives of trees. Roots carry water and minerals from the soil through the xylem tissues of the trunk up to the leaves. The leaves, with the help of chlorophyll, capture Sunlight Energy and Carbon Dioxide from the atmosphere, and release Oxygen into the air. Sugars are also produced and go downward through the phloem tissues to the trunk and roots. The way I remembered this process in biology classes was that the X in xylem has its upper lines reaching skyward, and things Flow downhill.

The scientists knew that most individual trees of the same species growing in the same forest stand are connected to each other through their root systems. Nutrient exchanges revealed that forests are superorganisms with interconnections much like ant colonies. This indicated a sort of social system where trees will share food with their own species and sometimes even nourish their competitors. Why are they considered social beings? Because there are advantages in working together.

It seems that single trees, much like hermits, have greater difficulties in having a successful life. It can be done, but it’s tough. A single tree cannot establish a consistent local climate and must battle weather conditions. Whereas a forest often creates an ecosystem that can somewhat modify extreme temperatures, store a lot of water, and generate a lot of humidity. These kind of living conditions can provide trees with great longevity. But for this success the forest must remain intact. Tree removal, or fatalities, would result in gaps in the tree canopy, which would then allow for greater deviations in temperatures, make trees more vulnerable to uprooting from storms, and allow greater summer heat to dry out the forest floor. Every tree would then suffer.

Wohlleben continues to say that social connections can also be seen in the forest canopy. Most trees grow their branches out until they encounter the branch tips of a neighboring tree of the same height. Growth usually stops there because the air and better light in that space is already being used, and the trees don’t want to take anything away from each other.

But, as a rule, those planted in forests can live much like single wild trees and react by suffering from isolation. And remember that he is writing about forests, not single trees planted in a well-kept yard or for landscaping.

I’ll continue referencing “The Hidden Life of Trees” in future shows and talk about Why Forests are Green; How they act as a Water Pump, and are Carbon Dioxide Vacuums.

This is Ron Hellstern, and I am Wild About Utah.
 
Credits:

Images: Courtesy & Copyright Greystone Books, LTD,
Lead Audio: Courtesy and Copyright
Text: Ron Hellstern, Cache Valley Wildlife Association

Additional Reading

Wohlleben, Peter, The Hidden Life of Trees, Jane Billinghurst, Translator, Greystone Books Ltd., 2016, https://www.amazon.com/Hidden-Life-Trees-Illustrated/dp/177164348X

Wohlleben, Peter, The Hidden Life of Trees – The Illustrated Edition, Jane Billinghurst, Translator, Greystone Books Ltd. 2018, https://www.amazon.com/Hidden-Life-Trees-Illustrated/dp/177164348X

Noe, Alva, A Web Of Trees And Their ‘Hidden’ Lives, National Public Radio, September 23, 2016, https://www.npr.org/sections/13.7/2016/09/23/494989594/a-web-of-trees-and-their-hidden-lives

Kuhns, Michael, https://upcolorado.com/utah-state-university-press/item/2130-a-guide-to-the-trees-of-utah-and-the-intermountain-west

Little, Elbert L, National Audubon Society Field Guide to North American Trees–W: Western Region, Chanticleer Press https://www.amazon.com/National-Audubon-Society-American-Trees-W/dp/0394507614 alternatively https://www.penguinrandomhouse.com/books/119974/national-audubon-society-field-guide-to-north-american-trees–w-by-national-audubon-society/

Watts, Tom & Bridget, Rocky Mountain Tree Finder, Nature Study Guild, Menasha Ridge Press, Birmingham, AL https://www.amazon.com/Rocky-Mountain-Tree-Finder-Watts/dp/0912550295 alternatively
https://www.menasharidge.com/product.php?productid=17125

What Tree Is That, A Guide to More Common Trees Found in North America, The Arbor Day Foundation, Nebraska City, NE, https://www.amazon.com/What-Tree-That-America-Recipient/dp/0963465759 alternatively https://www.arborday.org/trees/whattree/whatTree.cfm?ItemID=E6A

Tree Identification Index, USU Extension Forestry, https://forestry.usu.edu/tree-identification/index

Kuhns, Michael, Rupp, Lawrence, Selecting and Planting Landscape Trees, USU Extension Forestry, https://forestry.usu.edu/files/selecting-and-planting-landscape-trees.pdf

Key To The Trees Of Logan Canyon, USU Extension Forestry, https://forestry.usu.edu/tree-identification/keys-to-trees-of-logan/keys-to-trees-of-logan-canyon

Josh Explains Wild Neoteny

Josh Explains Wild Neoteny: Annual Wildflower Festival Cedar Breaks National Monument Courtesy National Park Service, Cedar Breaks National Monument
Annual Wildflower Festival
Cedar Breaks National Monument
Courtesy National Park Service, Cedar Breaks National Monument
“Hey, stop the truck!” my wife called from the passenger seat, her nose pressed against the window. I already knew what this was about; she was out the door before the dust had cleared the hood, kneeling in the grass. While she hovered over something newly found with purple petals, I stared out across the high, open meadow of blooming wildflowers, the urge to run surging into my feet. I turned at her exclamation several seconds later, half a football field of colored space between us now. Arms spread wide; grins from ear to ear. In a field of wildflowers, we were kids again.

Scientists call it neoteny, the retention of juvenile features in the adult of a species—basically, the harboring of a playful nature into adulthood. The research into the benefits of play, especially outdoor play, is becoming more replete by the day. In humans, play puts the right hemisphere of the brain into gear, that portion responsible for artistic and creative notions, imagination and insight, and holistic thought. The cerebellum and frontal lobes light up as well, increasing attunement to coordination, executive functioning, and contextual memory development. Neoteny, scientists say, is the key to a species’ adaptability and, therefore, its survival.

Alpine Pond Upper Flowers Cedar Breaks National Monument Courtesy National Park Service, Cedar Breaks National Monument
Alpine Pond Upper Flowers
Cedar Breaks National Monument Courtesy National Park Service, Cedar Breaks National Monument
Wild neoteny could be the term used to describe the human affinity to explore one’s natural surroundings, to wander off into the hills in search of something new and interesting, to learn the nuance of a place and to gain some intimacy with it—to call it home. We do that, I think, when we go on hikes into the wild hinterlands, catapult ourselves down the turbulent waters of our rivers, or climb the rock faces we stumble upon. It’s an adrenaline rush to be sure, a high on life as they say; but it’s also an act of survival—and of remaining human.

Robin Moore, a professor at North Carolina State University, says “the natural environment is the principle source of sensory stimulation….” “Sensory experiences,” he says, “link [our] exterior world with [our] interior, hidden, affective world.” The outdoor environment is a medium of human connection where, as Moore puts it, the “freedom to explore and play…through the senses…is essential for healthy development….” Dr. Stuart Brown, clinical researcher and founder of The National Institute for Play, behooves us in his Ted Talk on the subject to explore our individual histories of play. If you close your eyes and imagine yourself at play, where are you? The open water, a deep forest, a mountain peak, or maybe a field of wildflowers?

In his national bestseller, Last Child in the Woods, Richard Louv calls nature a “reset button.” It is the place where we are reminded of ourselves and our purpose. Australian musician Xavier Rudd sings, “Take a stroll to the nearest water’s edge/Remember your place.” It’s often proffered that in a time of industrial expectation and hyper-communication, we need the wild spaces more than ever. There’s some truth to that; but I think I’d go play there anyway, even if it wasn’t to escape the, quote-unquote, “workaday life.” I’m most human when I’m running through a field of blooming wildflowers.

I’m Josh Boling, and I’m Wild About Utah.

Credits:
Photos: Courtesy US National Park Service, Cedar Breaks National Monument
Text: Josh Boling, 2018

Sources & Additional Reading

Cedar Breaks, Plan Your Visit, National Park Service, https://www.nps.gov/cebr/planyourvisit/index.htm

Cedar Breaks National Monument, National Park Service, https://www.nps.gov/cebr/index.htm

Neoteny, Reference Terms, ScienceDaily, https://www.sciencedaily.com/terms/neoteny.htm