Erosion Made My Favorite Places

Erosion Made My Favorite Places: Bluff of Little Flat Top Courtesy and Copyright Shannon Rhodes, photographer
Bluff of Little Flat Top
Courtesy and Copyright Shannon Rhodes, photographer

Muddy Creek Courtesy and Copyright Shannon Rhodes, photographer Muddy Creek
Courtesy and Copyright Shannon Rhodes, photographer

North Fork Pleasant Creek Terracing Courtesy and Copyright Shannon Rhodes, photographer North Fork Pleasant Creek Terracing
Courtesy and Copyright Shannon Rhodes, photographer

Blackburn Draw Courtesy and Copyright Shannon Rhodes, photographer Blackburn Draw
Courtesy and Copyright Shannon Rhodes, photographer

Brendan Wenzel says the inspiration for his picture book “A Stone Sat Still” was a familiar boulder nestled in a tidal inlet near his family’s home. This stone was a dining place, a perch, a tool, and a landmark, but dependably there day after day, year after year. When I shared this book as a writing workshop launch with fellow educators, it drew recollections of sandboxes, rock collections, garden pavers, mantle stones, stacked-stone cairns keeping us on the right trail, and deeper connections to fathers. I wrote about how stones definitely don’t sit still when I am around. When my father would take us fishing, my brothers and I would most likely be skipping every flat rock we could find across the lake’s surface instead of manning our poles. Even now I can’t resist rolling a moqui marble down desert slickrock or plucking up a river rock to chase scurrying stonefly larva beneath.

Dr. Eric Newell, director of experiential learning at Edith Bowen Laboratory School and summertime river rafting guide, wrote about the secrets stones hold for him: “I like to pick up rounded river rocks, turn them gently in my fingertips, feel the smooth contours, and wonder where they journeyed from to this resting place—how long did it take for the eons to shape and polish them? And what would rivers be without stones?—the meticulous ways the currents stack and sort boulders to sand grains by size, coming to understand that every wave on the surface of the river is created by stones beneath—and the metaphor that provides for seeing and understanding children, adults, and even myself.”

Mountains, boulders, stones, cobbles, gravels, pebbles, sand grains, silt, mud. If the water is muddy or the wind is dusty, we know erosion is happening. It forms valleys, smooths jagged rocks, and carves unexpected slot canyons in the desert. It also causes black blizzards and landslides. According to Mark Milligan of the Utah Geologic Survey, the early decades of the 1900s saw the Civilian Conservation Corps setting to work not only building canals and roads, but contour terracing to stall mountainside erosion here in Utah. There is a sign on Skyline Drive in the Manti-LaSal National Forest that reminds us that those CCC boys were digging horizontal trenches above our cities well into the 1950s.

Many people equate erosion with the destructive forces that wear down earth. Yet, in her book titled “Erosion,” Terry Tempest Williams pairs eroding with evolving. She wrote, “Water freezes and shatters stone; rocks fall from the force of gravity; new rapids appear in rivers. Storms gather and floods roar through dry washes, cutting and scouring a wider channel…” We have water, ice, wind, and time to thank for the erosion that created Natural Bridges and Arches, Coral Pink Sand Dunes and Goblin Valley, and Muddy Creek and Blackburn Draw.

I’m Shannon Rhodes, and I’m wild about erosion’s role in shaping Utah.

Credits:

Images: Courtesy & Copyright © Shannon Rhodes, Photographer
Audio: Courtesy & © Friend Weller, https://upr.org/
Text:     Shannon Rhodes, Edith Bowen Laboratory School, Utah State University https://edithbowen.usu.edu/
Additional Reading Links: Courtesy Shannon Rhodes

Additional Reading:

Atwood, Genevieve. Geology of Utah. https://www.uen.org/utah_history_encyclopedia/g/GEOLOGY.shtml

Manti-LaSal National Forest Visitor Guide. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5370798.pdf

Milligan, Mark. What Are Those Lines on the Mountain? From Bread Lines to Erosion-Control Lines. Utah Geologic Survey Notes, v. 42 no. 1, January 2010. https://geology.utah.gov/map-pub/survey-notes/glad-you-asked/erosion-control-lines-on-the-mountains/

Olsen, Beth. Utah’s CCCs: The Conservators’ Medium for Young Men, Nature, Economy, and Freedom. Utah Historical Quarterly, Volume 62, Number 3, 1994 by Utah State History. https://issuu.com/utah10/docs/uhq_volume62_1994_number3/s/163708

Oskin, Becky. Mars on Earth: How Utah’s Fantastical Moqui Marbles Formed. 2014. https://www.livescience.com/47936-how-moqui-marbles-form.html


Wenzel, Brendan. A Stone Sat Still. 2019. San Francisco, CA: Chronicle Books. https://www.youtube.com/watch?v=P11LB4A-pjI

Williams, Terry Tempest. Erosion: Essays of Undoing. 2019. New York, NY: Sarah Crichton Books. https://www.amazon.com/Erosion-Undoing-Terry-Tempest-Williams/dp/0374280061

In Equal Measure to Our Fears

In Equal Measure to Our Fears: Utah Juniper (Juniperus osteosperma) Drawing water from a stone: this juniper grew out of just a few fractures in the surface rock. Courtesy US NPS, Neal Herbert, Photographer
Utah Juniper (Juniperus osteosperma)
Drawing water from a stone: this juniper grew out of just a few fractures in the surface rock.
Courtesy US NPS, Neal Herbert, Photographer
Doubt is a tricky thing. It’s neither good nor bad, it is simply the axis upon which the scales of hope and fear balance. It is the prerequisite of faith, belief, disbelief, and nihilism, all equal paths of equal circumstance. It is the fork in the road which Berra told us to take all the same. In Equal Measure to Our Fears

When I go outside, breathe in the thick charcoal air, see the dribbling water in the once-mighty streams, and hear more stories of growing sickness, I’ll admit that I have doubts which edge on fear. I doubt that this is the last year of record-breaking heat. I doubt that this is the last year of record-breaking drought. I doubt that this is the last year of record-breaking hospitalizations. Such doubt can make you feel hopeless, powerless, and just plain sad. What have we done? How did we get here? Wasn’t this all avoidable? It takes me some time, then, to remember to move on from that doubt and to take a path, but to never forget the place in which drove me to rest and reflect. Though it can feel like a good place of respite, a shady tree to rest one’s laurels or wallow and say uncle to what we’ve sown, there’s still work which can be done. To rest in doubt is to be a bump on a log and not the tree itself. I remember the lessons of the humble tree.

The tree lives because of doubt’s prodigy of conjoined fear and hope. We must also harness both in equal form and measure in order to grow, and to live. In seeing the unified balance there is motion. The tree’s roots reach downwards, clinging to the earth in fear. In this way the world is its. The tree’s branches reach skywards, opening to the sky in hope. In this way it is the world’s. The tree’s roots drink water and move the earth: from fear comes motion and matter. The tree’s leaves drink fire and move the air: from hope comes life and form. Without fear, we would shrivel. Without hope, we would rot. Without fear, we would fall. Without hope, we would suffocate. To be subject to hope, you must make fear a part of you. Latch onto it, and feel that this shade of love is life given purpose. Then you may reach upwards and see that you do so only because you contain that which you cling to.

The fear I feel when I breathe in our Utah air, see green lawns, and hear new numbers on the radio is necessary for hope, and both are only possible because of the blessings of doubt because the future is not fixed. And yet, there is another hidden secret to fear and hope, and that is action. The tree is not a static being. Like all of us, it is in a constant state of becoming. We may be where we are, but where we are does not mean we must remain. Trees grow over boulders, thrive upon cliffs, and so can we. We can move on from La Brean doubt on what shall be. We can continue our journey in becoming. Given this, we then have a question in which to answer for ourselves: the question though is not what shall we become, but towards which light do we choose to work towards in equal measure to our fears?

I’m Patrick Kelly, and I’m Wild About Utah.
 
Credits:
Images: Courtesy US National Park Service, Neal Herbert, Photographer
Audio: Courtesy & © J. Chase and K.W. Baldwin. https://upr.org/
Text:    Patrick Kelly, Director of Education, Stokes Nature Center, https://www.logannature.org
Included Links: Patrick Kelly & Lyle Bingham, Webmaster, WildAboutUtah.org

Additional Reading

Wild About Utah, Posts by Patrick Kelly

Stokes Nature Center in Logan Canyon, https://www.logannature.org/

The Indomitable Juniper, Canyonlands National Park, US National Parks Service, US Department of the Interior, https://www.nps.gov/cany/learn/nature/utahjuniper.htm (Image source)

Water Properties

Water Properties
Water as frost on a window
Courtesy and © Andrea Liberatore

Water PropertiesSurface tension – water drops
on a quarter
Courtesy and © Andrea Liberatore

Water PropertiesWater as snowflakes
Courtesy and © Andrea Liberatore

In our winter wonderland, water is all around. It piles upon the landscape in great white drifts. It is a substance life is completely dependent upon and as ordinary as it seems, this tasteless, odorless substance is actually quite amazing. Up to 60% of our body mass is due to water, and life as we know it would not exist if not for water’s unique physical properties.

Properties of Water

When most known liquids get colder they contract – shrinking around 10 percent in total volume. Water contracts too, but only until it reaches its freezing point, at which time it reverses course and begins to expand. This molecular marvel does wonderful things for life on earth. As water freezes and expands, the resulting ice becomes lighter than its liquid form, causing it to float. If ice contracted as other liquids do, it would sink, and lakes would freeze from the bottom up – and freeze quickly, meaning big changes for aquatic life. Water in all forms happens to be a very good insulator, meaning that it doesn’t change temperature very quickly. Ice floating on top of a pond insulates the water underneath, keeping it warmer, and therefore liquid, longer than it normally would. Obviously, this is beneficial for local creatures like fish and beavers not to mention the penguins, whales and seals that thrive in the colder parts of our planet.

Another critical property of water is its stickiness. Individual molecules are generally more attracted to each other than to other substances such as air or soil. This ‘stickiness’, or cohesion, creates surface tension, which allow puddles, rivers, and raindrops to form, and also enables water striders to glide on the water’s surface and rocks to skip across a lake. Water tension is also responsible for a tree’s ability to siphon water from the soil and transport it to the very topmost leaf. However, water’s bonds aren’t so strong as to be unable to break when a fish swims through or when you cannonball into the deep end. You can observe surface tension at home by dripping water onto the head of a coin, and watching it ball up into a surprisingly large mound.

Water is also one of the only known substances that naturally occurs in three phases – solid, liquid, and gas. This is important to many facets of life including the proper functioning of the weather system as we know it. Thankfully, there is a lot of water here on earth – about 320 million cubic miles of it. However, only four tenths of a percent of that comes in the form of freshwater lakes & rivers. Most of the rest is locked up in glaciers and oceans. It’s also important to realize that this is all of the water that Earth has ever had, and all the water we’re ever going to get, which can lead to some interesting thoughts about where that water you are about to drink has previously been. Perhaps it was once part of Lake Bonneville, in the snow that fell on the back of a wooly mammoth, or in a puddle slurped up by a brachiosaurus. If only water could talk…

For more sources and to calculate your water-use footprint, visit our website at www.wildaboututah.org.

For the Stokes Nature Center and Wild About Utah, this is Andrea Liberatore.

Credits:
Images:  Andrea Liberatore, Stokes Nature Center in Logan Canyon.
Text:     Andrea Liberatore, Stokes Nature Center in Logan Canyon.

Additional Reading:

Bryson, Bill (2004) A Short History of Nearly Everything. Broadway (Random House): New York.

U.S. Geological Survey (2013) The USGS Water Science School. Accessible online at: http://ga.water.usgs.gov/edu/

United Nations: Water. Accessible online at http://www.unwater.org/

Calculate your water footprint:
http://www.waterfootprint.org/?page=files/YourWaterFootprint

Utah’s Water Future

70% of our planet is covered in water, but you certainly wouldn’t know it by looking around Utah in August! It’s been hot and dry for about 3 months now and my yard and garden are really starting to feel the pinch.

Water can be a touchy subject in the West, and will become increasingly so as we look to the future.

Already our water resources are overextended, and all projected forecasts show an increasing need for water in the years ahead. Continued population growth combined with higher summer temperatures and drought conditions mean that this all important resource is only going to get more precious. Utah’s municipal water comes from either underground sources such as wells and springs or surface water including our many man-made reservoirs. Utah relies heavily on mountain snowpack to fill reservoirs and recharge springs, which leaves us wanting after weak winters. Many state reservoirs are predicted to drop to as low as 30% of their storage capacity this fall.

So how much water do we actually use? The average Utah household passes 650 gallons through its pipes each day, the vast majority of which goes towards bathing, toilets, and laundry. Household water use is of course only a fraction – about 13% – of our overall state consumption. Nearly 83% of the water used in Utah goes towards crop irrigation. Agricultural use plus household and industrial water add up to an astonishing 5 billion gallons of water used in the state of Utah each and every day. Per capita, Utah ranks 2

Utah is also the second driest state in the nation, again behind Nevada, though the amount of precipitation varies widely among our deserts and mountain ranges. On average, we receive around 13 inches of water each year across the state with some areas receiving less than 10 and others upwards of 50. All of that water has to be shared among the plants, animals, and humans living in each watershed. There are, of course, lots of ways to conserve water in the home: take shorter showers, run the washing machine or dishwasher only when full, and turn off the faucet while brushing teeth. Outside, water your lawn and garden only in the late evening, overnight, or early morning hours, but check the forecast first. In order to address our widespread and long-term water issues, however, bigger solutions are needed in addition to standard household water conservation. Last year, for example, the Bill & Melinda Gates Foundation sponsored a contest to reinvent the toilet in an attempt to save water and increase sanitation for people worldwide.

Governor Gary Herbert is also asking questions about Utah’s water this summer. He has convened a handful of meetings around the state to contemplate Utah’s Water Future, and is asking for public comments and suggestions on how to address the complicated issues that will face our state with regards to water use in the coming years. The last of these public meetings are being held in Salt Lake on August 13 and in Logan on August 15 can still add your comments and ideas to the record by visiting utahswaterfuture.org. Humans are an incredibly creative and adaptable species, and it will take our best efforts to overcome this daunting challenge. The future of this great state, and all the species who call it home, depend upon it.

Find links to the Governor’s water forum as well as more information on Utah’s water resources at our website: www.wildaboututah.org.

For the Stokes Nature Center and Wild About Utah, this is Andrea Liberatore.

Credits:

Photos: Courtesy & © Andrea Liberatore
Text:    Andrea Liberatore, Stokes Nature Center, logannature.org

Additional Reading:

Utah Division of Water Resources. http://www.water.utah.gov/

Utah Division of Water Resources (2010) Municipal and Industrial Water Use in Utah: Why do we
use so much water when we live in a desert? Available online at https://water.utah.gov/M&I/PDF/State/2010%20M_I%20Statewide%20SummaryCH.pdf

Governor Herbert’s forum: Utah’s Water Future: www.utahswaterfuture.org
Utah State University Water Quality Extension: http://extension.usu.edu/waterquality/

O’Donoghue, Amy Joi. (2013) Record Breaking Heat and Drought Sear Utah and the West. Desert
News, June 30, 2013. Available online at: http://www.deseretnews.com/article/865582439/Recordbreaking-heat-drought-sear-Utah-the-West.html?pg=all