Piute Farms Waterfall on Lower San Juan – a Tributary of Lake Powell

Piute Farms Waterfall on the San Juan River, An Example of Superimposition Courtesy & Copyright Mark McKinstry, Photographer
Piute Farms Waterfall on the San Juan River, An Example of Superimposition
Courtesy & Copyright Mark McKinstry, Photographer

Piute Farms waterfall is a 25-ft high cascade that has formed along the San Juan River and spans its entire width. The location is a remote spot in an upstream arm of Lake Powell reservoir.

To reach the falls it takes a rough two-hour drive from Mexican Hat, or a 100-mile-boat ride from Bullfrog Marina in Lake Powell.

It formed when the tributary re-routed itself, cut through a thick layer of sediment, and began flowing over a bedrock cliff.

Scientists call this phenomenon superimposition.

Jack Schmidt, Janet Quinney Lawson Chair of Colorado River Studies in the Quinney College of Natural Resources at USU explains, “When reservoirs are created by the construction of dams, the sediment load of inflowing rivers is deposited in the most upstream part of the reservoir. In Lake Powell…the deposits in the…San Juan arm of the reservoir are as much as 80ft thick.”

“[If} reservoirs…drop…the inflowing rivers erode into the accumulated sediment. There is no guarantee the location of the new channel will be in the same place as…the original channel.”

The San Juan River’s original route was buried under the thick layer of sediment. The river’s response was to form a new channel one mile south of the original route and over the ridge.

Schmidt continues, “A [similar] thing…happened in Lake Mead reservoir where an unrunnable rapid formed near Pearce Ferry where the new Colorado River flows over a lip… [of] consolidated sediment. Although not a vertical waterfall, Pearce Ferry Rapid is sometimes more dangerous to boating than any rapid in the Grand Canyon!”

With future droughts, we can expect reservoirs to be at low levels for extended periods, and superimposition will continue to occur forming additional waterfalls and obstructions. Managers monitor the positive and negative effects of these changes.

One impact of the Piute Farms waterfall is a novel subpopulation of endangered razorback suckers which are now blocked from swimming upstream to spawn.

Endangered Razerbck Sucker Captured near Piute Farms Waterfall Courtesy & Copyright Mark McKinstry, Photographer
Endangered Razerbck Sucker
Captured near Piute Farms Waterfall
Courtesy & Copyright Mark McKinstry, Photographer

Zach Ahrens, Native Aquatics Biologist at Utah Division of Wildlife Resources and graduate student at USU says, “The razorback and other native fishes in the Colorado River basin have evolved over millions of years to play their roles in spite of the extremes of temperature and flow in their riverine environment. Given the uncertainty of future climate and water resources…it’s important to do what we can to ensure their continued survival.”

Before the waterfall formed, managers were not sure what percentage of razorback suckers travelled this far upstream.

Endangered Razerbck Sucker Captured near Piute Farms Waterfall Courtesy & Copyright Mark McKinstry, Photographer
Endangered Razerbck Sucker
Captured near Piute Farms Waterfall
Courtesy & Copyright Mark McKinstry, Photographer

Mark McKinstry, Biological Scientist from the Bureau of Reclamation, explains, “It took perseverance, technology, and dedication of a lot of different folks to find where…the Razorbacks are and understand the fish’s life history strategy.”

Peter MacKinnon with the Quinney College of Natural Resources at Utah State University and Biomark Inc. provided the technical expertise to set up a method to insert Razorback suckers with pit tags (similar to those used in cats and dogs) then track them with antennas placed below the falls.

With this tracking method, managers and researchers identified more than 1000 razorback suckers below the falls, apparently trying to ascend the waterfall. Approximately 2000-4000 suckers live in the San Juan River. It is estimated about 25% of the razorbacks are unable to spawn – because the waterfall blocks fish passage. This could influence the population of the endangered fish.

The Bureau of Reclamation consulted with experts on how to help razorback suckers get past the waterfall so they can move upstream and spawn. The most feasible suggestion seems to be, to build a naturalized fish passage around the side of the waterfall. Managers and volunteers would build a trap location on the upstream side of the passage where fish moving upstream could be captured; volunteers could then release the captured razorbacks and other native fish upstream where they choose to spawn.

Phaedra Budy, professor in the Watershed Sciences Department and Unit Leader for U.S. Geological Survey Cooperative Fish & Wildlife Research Unit said, “The Razorback sucker has intrinsic value to the San Juan River and beyond, is a critical member of the ecosystem, and deserves every effort for recovery.”

Managers and researchers hope their information gained and recovery efforts will give the endangered razorback suckers an increased chance for survival in its changing environment.

This is Shauna Leavitt and I’m Wild About Utah.

Credits:
Photos: Courtesy & Copyright © Mark McKinstry
Text: Shauna Leavitt, USGS Utah Cooperative Fish and Wildlife Research Unit, Quinney College of Natural Resources, Utah State University

Sources & Additional Reading

Waterfall Still Blocks San Juan River, River Runners for Wilderness(RRFW), https://rrfw.org/riverwire/waterfall-still-blocks-san-juan-river

https://www.americansouthwest.net/utah/monument_valley/piute_farms.html

Razorback Sucker(Page 68), Utah’s Endandengered Fish, 2018 Utah Fishing Guidebook, Utah Division of Wildlife Services, https://wildlife.utah.gov/guidebooks/2018_pdfs/2018_fishing.pdf

Fish Ecology Lab, Utah State University, 
https://www.usu.edu/fel/

Leave it to Beaver

Leave it to Beaver: Beaver Dam and Pond Courtesy and Copyright Bethany Neilson, Photographer
Beaver Dam and Pond
Courtesy and Copyright Bethany Neilson, Photographer
A few years ago the Utah Division of Wildlife Resources conducted a wonderful workshop for educators to provide them with materials to take to their classes to help students understand the many issues dealing with wildlife.

As an introductory activity, the Ranger asked each of us to name the animal we thought that had the greatest influence or impact on ecosystems. People mentioned Deer, Cougars, Moose, Wolves and so on until it was my turn. Without hesitation I said “Beavers”. One of the teachers laughed at me and mocked my answer trying to embarrass me. So I asked the Ranger to repeat the question: Which animal did we think had the greatest influence or impact on ecosystems.

Leave it to Beaver: Beaver Dam Releasing Water Courtesy and Copyright Bethany Neilson, Photographer
Beaver Dam Releasing Water
Courtesy and Copyright Bethany Neilson, Photographer
“Oh”, I said making certain I had now understood the question. “In that case I have no hesitation now in saying the Beaver.” The room grew quiet, but the Ranger agreed with my answer.

Leave it to Beaver: Below a Beaver Dam Courtesy and Copyright Bethany Neilson, Photographer
Below a Beaver Dam
Courtesy and Copyright Bethany Neilson, Photographer
There is no question that all animals impact ecosystems. Heavy grazing or browsing by deer or elk can change the structure of forests and meadows. Predators, or the lack of them, can definitely alter what happens to those species. But consider the beaver for a moment. There are positive and negative things they do, but they definitely impact ecosystems. So consider this love-hate relationship humans have with them.

Yes, they will take down some trees to build dams and lodges. Problems might include:
The potential flooding of homes, agricultural land, timber land or orchards;
Their abandoned dams can create floods as they collapse;
There is potential flooding of roads and blocking of culverts;
And the deterioration of stream banks can occur.

But in a natural setting, where they do not impact roads or developments, beavers can do amazing things.
On the positive side, they create ponds which:
Provide habitat for trout;
Provide drinking water for all the animals in the area, from birds to bears;
Provide a storage of water that could be critical in drought conditions;
Trap silt and control small floods;
Invigorate the sprouting of early riparian and wetland plants;
Can help combat the effects of continual rising temperatures and earlier Spring snowmelt by maintaining a water supply for ranching, wildlife and native vegetation;
And they are basically constructed and maintained at little or no cost to humans.

Utah State University, and the Division of Wildlife Resources, have been developing partnerships with landowners to help restore beavers in locations where they can succeed and provide benefits to the land, wildlife, and ranching efforts. In areas where there are few trees, they construct Beaver Dam Analogues by pounding fence posts across streams, weaving willow branches between them, and plugging the base with large rocks and mud. These are similar to natural beaver dams and give them a good start to build their own homes there.
If you are aware of any beavers in questionable areas, contact

USU Watershed Sciences or the DWR to help relocate them where they can impact ecosystems in positive ways.

This is Ron Hellstern, and I am Wild About Utah.
 
Credits:

Images: Courtesy & Copyright Ron Hellstern
Text: Ron Hellstern, Cache Valley Wildlife Association

Additional Reading

North American Beaver, Castor canadensis, Utah Division of Wildlife Resources, Wildlife Notebook Series No. 24,
http://digitallibrary.utah.gov/awweb/awarchive?type=download&item=56529

UTAH BEAVER MANAGEMENT PLAN 2010–2020, Developed with the Beaver Advisory Committee, DWR Publication 09-29, Utah Division of Wildlife Resources, 2010, https://wildlife.utah.gov/furbearer/pdf/beaver_plan_2010-2020.pdf

WATS 6860 – Partnering with Beaver in Restoration Design, University Catalog 2017-2018, Utah State University, http://catalog.usu.edu/preview_course_nopop.php?catoid=12&coid=93002

Beaver: Restoration liaison between riparian and upland systems. Joe Wheaton, Assistant Professor, Utah …, https://www.youtube.com/watch?v=62A3RqL7Xp8

WEBINAR: Cheap and Cheerful Stream Riparian Restoration with Beaver. Joe Wheaton …
https://www.youtube.com/watch?v=m1uysDrOI_w

Beaver Restoration Workshop, Partnering with Beaver in Restoration, http://beaver.joewheaton.org/

Webinar: Cheap & Cheerful Stream Restoration – With Beaver? http://beaver.joewheaton.org/beaver-news/webinar-cheap-cheerful-stream-restoration-with-beaver

Science Unwrapped Talk by Joe on Beaver
http://beaver.joewheaton.org/beaver-news/science-unwrapped-talk-by-joe-on-beaver

Videos & Movies
http://beaver.joewheaton.org/videos–movies.html

Joe Wheaton – Beaver: Restoration liaison between riparian and upland systems
https://forestry.usu.edu/videos-conferences-webinars/conferences/restoring-west-conference-2013/joe-wheaton

Dr. Joseph Michael Wheaton, Watershed Sciences, Associate Professor, https://qcnr.usu.edu/directory/wheaton_joseph
Utah Water Watch, Beaver Monitoring App, http://extension.usu.edu/utahwaterwatch/citizenscience/beavermonitoringapp/

Beaver Dam Mapping App Now Available for Citizen Scientists, http://www.exploreutahscience.org/science-topics/environment/item/148-citizen-scientists-can-now-use-an-app-to-help-map-beaver-dams-in-utah


ARKive Images of Life on Earth, Information Sheet on Castor Canadensis (including some outstanding videos) http://www.arkive.org/ – (BBC Natural History Unit)

  • American Beaver – Overview
  • American Beaver in the Lodge with Young
  • American beaver felling trees and storing food for the winter
  • American beaver scaring moose away from its lodge
  • American beaver returning to its lodge with food

  • Collen, P. and R.J. Gibson. 2001. The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and riparian habitats, and the subsequent effects on fish – a review. Reviews in Fish Biology and Fisheries 10: 439–461, 2001. http://www.springerlink.com/content/v48769740n817601/fulltext.pdf [ Accessed May 1, 2010]

    Prettyman, B. 2009. Utah wildlife: Leave it to the beavers. Article in Salt Lake Tribune, October 16, 2009. http://www.sltrib.com/ci_13570110 [ Accessed April 29, 2010]

    Smithsonian Castor Canadensis Information Page http://www.mnh.si.edu/mna/image_info.cfm?species_id=32 [ Accessed April 29, 2010]

    Big Bend Habitat Restoration Project: A Natural Work of Heart, Open Spaces-A Talk on the Wild Side, US FWS, http://www.fws.gov/news/blog/index.cfm/2016/3/25/Big-Bend-Habitat-Restoration-Project-A-Natural-Work-of-Heart [Accessed March 31, 2016]

    Beaver Dams Strengthened by Humans Help Fish Rebound
    60-Second Science – July 25, 2016 – By Jason G. Goldman02:29 http://www.scientificamerican.com/podcast/episode/beaver-dams-strengthened-by-humans-help-fish-rebound/ Also available through the podcast https://itunes.apple.com/us/podcast/60-second-science/id189330872?mt=2

    Peru

    I just returned from two weeks in the Peruvian Andes conducting field work on high elevation wetlands and how they were responding to impacts from livestock grazing in a changing climate. We were in the Huascaran National Park, the highest part of the Andes with many peaks soaring above 20,000 feet. Our Colorado State U. group was joined by students and faculty from 4 other campuses and the international Mountain Institute. These wetlands, or bofedales in Peruvian jargon, are essential in providing quality water for the thousands who reside below.

    Kings Peak Highest Peak in Utah 13,528 feet ASL Courtesy USDA Forest Service
    Kings Peak
    Highest Peak in Utah 13,528 feet ASL
    Courtesy USDA Forest Service
    Having spent many forays into our magnificent High Uintah Mountains, I found myself reflecting on ecological and cultural parallels. Although our highest Kings peak at 13,528 feet was far below Mount Huascaran’s 22,205 foot elevation, its bold loftiness provides a similar experience as would standing on the Huascaran’s summit. A departure results from the highly glaciated Huascaran. Our Uintahs lost their glaciers around 8000 years ago from a warming climate. Unfortunately, Huascaran’s glaciers are following suit having lost nearly 30% over the past three decades. These changes were being compounded by poorly managed hordes of livestock which had overgrazed much of the landscape.

    Wild Flowers in Tony Grove Meadow Courtesy USDA Forest Service Teresa Prendusi, Photographer
    Wild Flowers in Tony Grove Meadow
    Courtesy USDA Forest Service
    Teresa Prendusi, Photographer
    Our primary focus was on changing vegetation, invertebrate populations, and water quality. At the peak of Peru’s dry, winter season, I wasn’t expecting to see much in bloom. To my delight, I recorded nearly 30 species of flowers in both woody and herbaceous form. Tomorrow I will be leading a nature hike in the wetlands and uplands of Tony Grove Lake here in our Bear River Range where I expect a like number in bloom combined with a plethora of butterflies and birds.

    Although virtually all of the Andean flowers were new to me, there were similar families and genera. Of special note was a shrubby form of lupine growing to 5 feet, and another, exquisite columnar form approaching 6 feet found only in this national park. “Taulli Macho” is the local name for this splendid plant. “Macho” is a great descriptor!

    Birds and butterflies were no less baffling. All were new to my life list- Pona ibis, Andean Condors, giant coot, tufted duck, Andean flicker, giant humming bird, on and on. Senses overwhelmed. I missed the familiar sights and songs from our mountain birds- Clark’s nutcrackers, Steller jays, Cassin’s finch, pine siskins, violet green swallows, mountain bluebirds to name a few.

    Grazing at Fishlake in Utah Courtesy USDA Forest Service
    Grazing at Fishlake in Utah
    Courtesy USDA Forest Service
    I did a bit of research on our High Uintahs and found some parallels related to climate change and livestock management. Although not as profound as calving glaciers in the Andes, or hordes of free ranging livestock, a continued loss of our snow pack and resulting changes in hydrology compounded by certain livestock grazing practices are under close scrutiny by agencies and others. A recent publication “Assessment of Watershed Vulnerability to Climate Change for the Uinta-Wasatch-Cache and Ashley National Forests, Utah” published by the United States Department of Agriculture has much to offer.

    This is Jack Greene, and you guessed it- I’m Wild about Utah!!

    Credits:

    Images: Courtesy USDA Forest Service, Photographers noted, where available, for each image
    Text:     Jack Greene

    Sources & Additional Reading:

    Rice, Janine; Bardsley, Tim; Gomben, Pete; Bambrough, Dustin; Weems, Stacey; Leahy, Sarah; Plunkett, Christopher; Condrat, Charles; Joyce, Linda A. 2017. Assessment of watershed vulnerability to climate change for the Uinta-Wasatch-Cache and Ashley National Forests, Utah. Gen. Tech. Rep. RMRS-GTR-362. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 111 p., https://www.fs.usda.gov/treesearch/pubs/54330

    Slots, Els, World Heritage Site for World Heritage Travellers, https://www.worldheritagesite.org/list/Huascaran+National+Park

    Huascarán National Park, UNESCO World Heritage Sites, http://whc.unesco.org/en/list/333

    Riparian Zones

    Riparian Zones: Clear Creek in the Spring Courtesy & Copyright Holly Strand, Photographer
    Clear Creek in the Spring
    Courtesy & Copyright Holly Strand, Photographer
    Summer’s heat has turned on. It was evident in a dramatic fashion as I ran a ridge in N. Utah where the early am temps were near 70 degrees, flowers had faded, and the absence of bird song. As I descended to the canyon bottom the temperature dropped a solid 20 degrees and bird voices returned where yellow warblers were competing with lazuli buntings for top songster. I had entered the riparian, or river side biotic community- from the burnt brown of cheat grass above to the lush “green zone” below supporting abundant life in our desert state. I won’t be running ridge tops any time soon!

    Throughout the Intermountain West and Great Basin, these givers of life are critical areas for water, wildlife, agriculture, and recreation. About 80 % of all animal life is dependent on stream side habit sometime during its life cycle. As a birder and botanist, this is where I spend much of my time documenting and enjoying the abundance.
    On a recent, brief bird survey along the Logan River golf course trail, I recorded 33 species with another ten or so known to nest in this river corridor. I’m planning to prepare a bird checklist for golfers to add more “birdies” to their score card.

    Many of these special places have been seriously degraded through invasion of exotic species, agricultural practices, various forms of development, and channelization. But help is on the way.

    The Logan River Task Force is one excellent example. Launched in 2016, the task force is well on its way to restoring a much healthier, biologically rich river system. Replacing crack willow, a Eurasian non-native tree, with native cottonwood and willow accompanied by a rich understory of shrubs, will significantly enhance the biodiversity along the floodplain. Another major change is underway as they replace the straight, channelized portion of the river to its meandering original channel. This will create more pools for fish, wetlands for flood control and filtering, while improving aesthetics and recreation opportunity.

    In an earlier WAU reading, I mentioned the good work being done by western boxelder ranchers reintroducing beaver whose dams will assist with maintaining stream flow and water quality along with improved fish and wildlife habitat. I’m aware of the same occurring on a Mink Creek ranch in SE Idaho.

    The world appears to be awakening to the many values of these critical wildlife and water quality riparian zones, as I awoke to the same on my early morning run.

    This is Jack Greene and I’m Wild about Utah!!

    Credits:

    Images: Holly Strand
    Text:     Jack Greene

    Sources & Additional Reading:

    Wheaton, Joe, Beaver Restoration Assessment Tool, Utah Division of Wildlife Resources, http://etalweb.joewheaton.org.s3-us-west-2.amazonaws.com/Downloads/BRAT/UTAH_BRAT_Management%20Brief.pdf

    Riparian Zones, What is a Riparian Zone?, Water Quality, USU Extension, https://extension.usu.edu/waterquality/learnaboutsurfacewater/watersheds/riversandstreams/riparianzones