Karst Topography

Karst Topography: Entrance to a Karst Cave Courtesy & © Josh Boling
Entrance to a Karst Cave
Courtesy & © Josh Boling
Rivers run beneath these hills, carving winding caverns through ancient stone, plumbing a subterranean watershed—a second topography, ever changing. What little we’ve seen must lead further in, places mythology might only describe.

Karst topography’ refers to landscapes cleaved apart by the leaching of water through a soluble bedrock layer comprised of carbonate-rich rocks like the limestone and dolomite found throughout Utah’s mountains or the evaporate-type gypsum and rock salt layers found in Utah’s redrock country. Over time, this erosion by surface and groundwater creates pinnacles, rippling fissures, gaping sinkholes, or springs on the surface—deep caverns, plummeting vertical shafts, and winding tunnels through which entire rivers can flow below.

We floated one such river once, in complete darkness, guided only by a subtle current and the voice of our local guide. He said he was of Mayan descent, so we listened closely when he relayed stories of Chaac, the Mayan god of rain responsible for the generous flow of water through the caverns we explored. Indeed, it is within these same caverns that he dwells, we were told. Further north, in Mexico and the desert southwest, it’s Tlaloc, the goggle-eyed Aztecan deity that controls the rain. He, too, is supposed to reside within the body of the earth.

Karst Cave Courtesy & © Josh Boling
Karst Cave
Courtesy & © Josh Boling
There’s no mythology I’m aware of for my little corner of the globe. So, scientists and explorers alike descend into the karstic caves of northern Utah to see what they might learn. “Utah is unique,” one such explorer told me, “with some of the most difficult caves that exist in the world, then some of the most spectacular, and some of the most benign.” Intrigued, I set out to see what I could find in my own back yard. Ribs of bleached limestone called karrens spread across a plateau like a washboard road, sinkholes that occupy the better part of an entire meadow, blind valleys sunken into a void in the bedrock, innumerable unnamed springs, and a small, non-descript cavity in the crust—the thing I had really been looking for this whole time.

Main Drain is Utah’s deepest and the nation’s 11th-deepest cave. It’s also wildly difficult and dangerous to navigate, yet absolutely critical to explore for the sake of furthering scientific understanding. I talked to Larry Spangler of the US Geological Survey in Salt Lake City about the significance of karst landscapes like Main Drain. “The caves that are developed in these terrains,” Spangler says, “are…valuable sources of information in regard to changes in climate and landscape evolution over time.” The chemistries of these caves are unique to their environment, and analysis of mineral deposits within the caves can provide insights into how average surface temperatures have changed over time and how wet or dry the landscape above was in any given period. Karst caves can reveal climate data for specific locales that may help us predict how a warming planet might affect our local ecosystems.

The water that flows through Main Drain and other cave systems like it in the form of snowmelt and subterranean streams carves its way vertically and horizontally through layers of bedrock hundreds of millions of years old—providing researchers a literal inside look at the formation of mountains. And as a map of these subterranean watersheds begins to come together, we gain a better understanding of the hydrology of an area and its effects on water quality.

When I spoke to Spangler, he wanted to make it very clear just how sensitive these karst landscapes are to surface activities, for the health of ecosystems and the integrity of watersheds, of course, but also for the health of human communities. The US Geological Survey estimates that as much as a quarter of the world’s population depends on karst landscapes for their water supply. The city of Logan, where my family and I live, sources its water from one of the larger karst springs in the area. The people are drinking straight from the mountain.

Rivers run beneath these hills, and through us as well.

I’m Josh Boling, and I’m Wild About Utah!
 
Credits:
Photos: Courtesy & Copyright Josh Boling, Photographer
Sound: Courtesy & Copyright Josh Boling
Text: Josh Boling, Edith Bowen Laboratory School, Utah State University https://edithbowen.usu.edu/
Additional Reading Links: Josh Boling

Sources & Additional Reading

Author’s note: Caves and other karst features are inherently dangerous. You should never enter a cave or other karst feature without the appropriate training, gear, and an experienced person(s) to accompany you.

Shurtz, David K & Shurtz, Ryan K, The Discovery, Exploration of, and Sufferings withing Utah’s Main Drain Cave, Utah Grottos, April 2005 https://www.jonjasper.com/TonyGrove/MainDrainCave-NSSApril2005.pdf

Haydock, Adam, Cave Dive Operations in Main Drain Cave, Utah, https://www.even-further.com/dive-expedition-in-main-drain-utah

Caving Main Drain Cave, Logan Canyon, Utah, Outdoor Activities, The Dye Clan, August 31, 2013, https://dyeclan.com/outdooractivities/caving/?id=334

Main Drain Cave, Utah Caving, February 14, 2014, https://utahcaving.wordpress.com/2014/02/14/main-drain-cave/

Karst Topography Paper Model (Learning Activity, Grade Level: 9-12), National Park Service, US Department of the Interior, https://www.nps.gov/subjects/caves/karst-topography-model.htm
Karst Topography Paper Model Background
Soto, Limaris R.(modified by), After: Alpha, Tau Rho, Galloway, John P, and Tinsley III, John C., Karst (U.S. Geological Survey Open-file Report 97-536-A), Topography Paper Model, U.S. Department of Interior, U.S. Geological Survey, National Park Service, https://www.nps.gov/subjects/caves/upload/Karst-Topography-Model-_Written-Section_508c.pdf (formerly: https://www.nps.gov/subjects/caves/upload/Final-Karst-Topography-Model-_Written-Section_5-14-2014.pdf)

Weary, David J. and Doctor, Daniel H., Karst in the United States: A Digital Map Compilation and Database, Open-File Report 2014–1156, U.S. Geological Survey(USGS), https://pubs.usgs.gov/of/2014/1156/pdf/of2014-1156.pdf

Lawrence, Lawrence E., Delineation of Recharge Areas for Karst Springs in Logan Canyon, Bear River Range, Northern Utah, U.S. Geological Survey/The Pennsylvania State University, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.543.5904&rep=rep1&type=pdf

Francis, George Gregory, Stratigraphy and Environmental Analysis of the Swan Peak Formation and Eureka Quartzite, Northern Utah, (1972). All Graduate Theses and Dissertations. 1684 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2683&context=etd

Morgan, Susan K., Geologic Tours of Northern Utah, Miscellaneous Publications, 92-1, Utah Geological Survey, Adivision of Utah Department of Natural Resources, (1992), https://ugspub.nr.utah.gov/publications/misc_pubs/mp-92-1.pdf

Connecting Caves, Karst Landscapes and Climate Around the World, Circle of Blue, January 18, 2010, https://www.circleofblue.org/2010/world/connecting-caves-karst-landscapes-and-climate-around-the-world/

Bahr, Kirsten, “Structural and Lithological Influences on the Tony Grove Alpine Karst System, Bear River Range, North Central Utah” (2016). All Graduate Theses and Dissertations. 5015. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=6053&context=etd

The Eastern Shore of Bear Lake

Eastern Shore of Bear Lake Courtesy & © Patrick Kelly, Photographer
Eastern Shore of Bear Lake
Courtesy & © Patrick Kelly, Photographer
The Eastern shore of Bear Lake is a quiet place

Far from the hubbub and close to what is good for us

Seldom visited by those who want

And home to all that one needs

As autumn takes its dive towards winter and leaves begin to turn

Be like the Eastern shore of Bear Lake

Be Peaceful

Be Deep

Be…

I’m Patrick Kelly and I’m Wild About Utah
 
Credits:

Images: Image Courtesy & Copyright © Patrick Kelly, Photographer
Audio: Contains audio Courtesy & Copyright Patrick Kelly
Text:    Patrick Kelly, Director of Education, Stokes Nature Center, https://logannature.org
Included Links: Lyle Bingham, Webmaster, WildAboutUtah.org

Additional Reading

Leavitt, Shauna, Bear Lake Sculpin – Cottus extensus, Wild About Utah, August 28, 2017, Bear Lake Sculpin – Cottus extensus, https://wildaboututah.org/bear-lake-sculpin-cottus-extensus/

Bingham, Lyle, Kervin, Linda(voice), Bonneville Cisco, Wild About Utah, February 11, 2009, Bonneville Cisco, https://wildaboututah.org/bonneville-cisco/

Bear Lake Valley Convention and Visitors Bureau, Bear Lake Valley Convention and Visitors Bureau, https://bearlake.org/

Are Bear Lake’s Ciscos a Joy or Curse?, Angler Guide, https://www.anglerguide.com/articles/112.html

Prosopium gemmifer, Bonneville cisco, FishBase, https://www.fishbase.org/Summary/SpeciesSummary.php?id=2683

Bonneville cisco, Prosopium gemmifer, Utah Division of Wildlife Resources, Department of Natural Resources, State of Utah, https://fieldguide.wildlife.utah.gov/?species=prosopium%20gemmifer

Utah Wildlife Action Plan, A plan for managing native wildlife species and their habitats to help prevent listings under the Endangered Species Act. Utah Division of Wildlife Resources, Department of Natural Resources, State of Utah, https://wildlife.utah.gov/pdf/WAP/Utah_WAP.pdf

Nielson, Bryce, Winter Fishing Comes Naturally at Bear Lake, Utah Outdoors, https://www.utahoutdoors.com/pages/bear_lake_winter.htm

The Ecology in and around the Logan River

Belted Kingfisher Ceryl alcyon Courtesy US FWS, C Schlawe, Photographer
Belted Kingfisher
Ceryl alcyon
Courtesy US FWS,
C Schlawe, Photographer
Logan River ecology is about connections between highlands and lowlands, water and land, life in and around the river and resources that support that life.

The river begins in southeastern Idaho and runs 53.5 miles to its confluence with the Cutler Reservoir in Utah’s Cache Valley. The river transitions from mountain riparian, characterized by low growing willows and coniferous trees, to the valley’s lowland riparian where it’s dominated by a variety of shrubs, cottonwoods, and willow trees. Both wildlife and plants change along this elevational gradient giving the Logan River greater ecological diversity than might be found over hundreds of miles of a flatland river.

Rivers move water. They also transport sediments and nutrients that drop out of the water wherever the current slows, for example on floodplains during spring floods. This is why floodplains, or riparian zones, have such productive soils.

The rich soils and water available on the floodplain support a wide diversity of plants. These plants in turn provide underlying layers for insects, nesting sites for birds, and water-cooling shade that harbors the heat sensitive cutthroat trout. Plants also drop their leaves into the river providing food and nutrients to aquatic insects.

One insect found in the Logan River is the mayfly, a graceful macroinvertebrate with unique upright wings and a delicate silhouette. The female adult drops her eggs on the river’s surface which then fall to the river’s bottom. The nymphs hatch within a few days or weeks. They spend the next year moving along the river’s bottom hiding among vegetation, rocks, and fallen leaves. After a year, nymphs swim to the surface and molt into duns which fly to nearby riparian vegetation. After a couple hours duns shed their skins and become brightly colored adult mayflies called spinners.

Male spinners form a swarm over the water to attract females who fly into the swarm. Pairs mate in flight; after mating the female flies down to the river to deposit her eggs, and dies shortly thereafter.

A large number of mayflies do not complete their life cycle as they are eaten by fish, spiders, bats and birds.

Bonneville cutthroat trout, Utah’s state fish, subsist largely on aquatic insects including mayflies. Feared to be extinct in the 1970s, biologists searched the state for Bonneville cutthroat trout and when a population was found in the Logan River, wildlife managers and USU scientists teamed together to ensure the cutthroat population became and remained robust.

American Dipper Courtesy US FWS Dave Menke, Photographer
American Dipper
Courtesy US FWS
Dave Menke, Photographer
Hundreds of bird species eat aquatic insects; one bird, however, specializes in eating aquatic insects under water. The American Dipper, walks on the bottom of Logan River using its wings like a submarine’s diving planes to keep it from bobbing to the surface. Walking along the river bed, the dipper turns over small rocks and sunken sticks to uncover and eat insect nymphs.

Other riparian birds, like the belted kingfisher, are fish-eaters. This handsome, crested, steel blue bird can be seen perched in the trees next to the Logan River eying fish beneath the surface. At times, kingfishers will hover directly above the water announcing their presence with a loud, rattling call. At the right time, the kingfisher dives headlong into the river using its long, sharp beak like a tweezers to catch small fish.

Rivers, like the Logan, and their riparian zones, support some of the richest biological diversity in the West. They are forceful and ever-changing, but provide all that life needs to survive and thrive in a compact area. These are dynamic ribbons of green and blue that connect land to water, plants to animals, and humans to nature.

This is Shauna Leavitt and I’m wild about Utah.

Credits:
Photos: Courtesy & Copyright ©
Audio: Courtesy & Copyright © Friend Weller, Utah Public Radio
Text: Shauna Leavitt, Utah Cooperative Fish and Wildlife Research Unit, Quinney College of Natural Resources, Utah State University
Co-Authored by: Frank Howe, Wildland Resources, Assoc. Prof. (State Cooperator), Quinney College of Natural Resources, Utah State University

Sources & Additional Reading

Geologic Map of the Logan 7.5′ Quadrangle, Cache County, Utah, Utah Geological Survey, 1996, https://ugspub.nr.utah.gov/publications/misc_pubs/mp-96-1.pdf

Williams, Stewart J. Lake Bonneville: Geology of Southern Cache Valley, Utah, Geological Survey Professional Paper 257-C, US Department of the Interior, 1962, https://pubs.usgs.gov/pp/0257c/report.pdf

Biek, Bob; Willis, Grant; Ehler, Buck; Utah’s Glacial Geology, Utah Geological Survey, September 2010, https://geology.utah.gov/map-pub/survey-notes/utahs-glacial-geology/

Hylland, Rebecca, What are Igneous, Sedimentary & Metamorphic Rocks?, Glad You Asked, Utah Geological Survey, https://geology.utah.gov/map-pub/survey-notes/glad-you-asked/igneous-sedimentary-metamorphic-rocks/

A Short History of Logan River

Over fifteen thousand years ago, the glacially fed Logan River was flowing into Lake Bonneville which covered most of the NW quadrant of the state and completely filled Utah’s Cache Valley.

The river met the ancient Lake Bonneville some distance up Logan Canyon so it was much shorter. Animals that lived along the river included saber-toothed cats, woolly mammoths and giant ground sloths.

About ten thousand years later, after Lake Bonneville had disappeared, the Logan River meandered across the old lake bed and the Shoshone Native American tribe made Cache Valley their home.

Shoshone Women and Children. Photo taken in 1870, Unknown photographer. Courtesy USU Digital History Collections.
Shoshone Women and Children. Photo taken in 1870, Unknown photographer. Courtesy USU Digital History Collections.
Frank Howe, chairman of the Logan River Task Force, adjunct associate professor, and university liaison for Utah Division of Wildlife Resources said, “When people say ‘let’s return Cache Valley to how it was naturally’ they don’t realize the valley [had been] managed by the Shoshone for thousands of years before the settlers arrived.”

The Shoshone burned the valley frequently to drive the Bison and provide better forage for their horses. This impacted the vegetation across the valley and along the river. Instead of large stands of tall trees, the river was lined with shrubs which responded better to fire, hence the valley’s first name Willow Valley.

Water flowing in Right-hand Fork one of the tributaries of Logan River. Courtesy & Copyright Shauna Leavitt
Water flowing in Right-hand Fork one of the tributaries of Logan River. Courtesy & Copyright Shauna Leavitt
During this time the flow and movement of the Logan River was much different, in part because of the beaver families who built their homes and dams up and down the waterway. The dams created ponds whose waters seeped into the valley bottoms raising the water table and saturating the sponge. Joseph Wheaton, associate professor of the Department of Watershed Sciences in the Quinney College of Natural Resources explained, “the saturated ground increased resilience to drought, flood and fire.”

In the early 1800s trappers arrived in the valley.

Michel Bourdon was one of the earliest trappers to see Cache Valley around 1818. The river was, for a short time, named after him. A few years later, Ephraim Logan arrived in Cache Valley. He and many other trappers attended the Rocky Mountain Rendezvous along the Bourdon River in 1826. Shortly thereafter, Logan died during one of his outings and the area’s trappers decided to rename the river Logan, in his honor.

Trapping for the fur industry severely impacted the beaver population and the Logan River. The dam building beavers were almost trapped to extinction because of the European fashion demand. Luckily, fashion trends changed before beaver were extinct. However, the virtual elimination of beavers fundamentally changed the character of the Logan River to this day.

Man fly-fishing in Logan River, Logan Canyon, Utah, July 21, 1937. Courtesy of USU Digital History Collections.
Man fly-fishing in Logan River, Logan Canyon, Utah, July 21, 1937. Courtesy of USU Digital History Collections.
In the 1850s the first settlers arrived in Cache Valley. Their arrival had a large impact on Logan River. Within a year they began constructing the first canal for irrigation.

Logan’s Main Street about 1920, Courtesy of Darrin Smith
Logan’s Main Street about 1920, Courtesy of Darrin Smith
Around the turn of the 19th century it became apparent the grazing and timber need of the settlers had been hard on the Logan River and the surrounding landscape. Albert F. Potter surveying the Logan River watershed for President Theodore Roosevelt, reported the canyon had been overgrazed and its timber overcut. The timber, at the time, was used for railroad ties and to build Logan City.

Logan Canyon about 1910. Four waterways: the aquaduct which was used for power generation, the canal, a water way that ran behind the building which had been part of the old Hercules Power Plant, and the Logan River. Photographer H.G. Hutteballe, Courtesy of Darrin Smith Photo Collection
Logan Canyon about 1910. Four waterways: the aquaduct which was used for power generation, the canal, a water way that ran behind the building which had been part of the old Hercules Power Plant, and the Logan River. Photographer H.G. Hutteballe, Courtesy of Darrin Smith Photo Collection
As the valley’s population grew, so did the demand for Logan River water.

Color enhanced photo 1910 photo of Logan Canyon Courtesy Logan Library
Color enhanced photo 1910 photo of Logan Canyon
Courtesy Logan Library
Over the next few months, Wild About Utah will continue this series on the Logan River to tell the stories about its ecology, social value, and how humans have worked together to make it a community amenity not just a canal.

We hope you’ll join us as we learn more interesting facts about Logan River.

This is Shauna Leavitt and I’m wild about Utah.

Credits:
Photos: Courtesy & Copyright ©
Audio: Courtesy & Copyright © Friend Weller, Utah Public Radio
Text: Shauna Leavitt, Utah Cooperative Fish and Wildlife Research Unit, Quinney College of Natural Resources, Utah State University
Co-Authored by: Frank Howe, chairman of the Logan River Task Force, adjunct associate professor, and university liaison for Utah Division of Wildlife Resources.

Sources & Additional Reading

Geologic Map of the Logan 7.5′ Quadrangle, Cache County, Utah, Utah Geological Survey, 1996, https://ugspub.nr.utah.gov/publications/misc_pubs/mp-96-1.pdf

Williams, Stewart J. Lake Bonneville: Geology of Southern Cache Valley, Utah, Geological Survey Professional Paper 257-C, US Department of the Interior, 1962, https://pubs.usgs.gov/pp/0257c/report.pdf

Biek, Bob; Willis, Grant; Ehler, Buck; Utah’s Glacial Geology, Utah Geological Survey, September 2010, https://geology.utah.gov/map-pub/survey-notes/utahs-glacial-geology/

Hylland, Rebecca, What are Igneous, Sedimentary & Metamorphic Rocks?, Glad You Asked, Utah Geological Survey, https://geology.utah.gov/map-pub/survey-notes/glad-you-asked/igneous-sedimentary-metamorphic-rocks/