Defining the Great Basin

Willow Creek North of Wells, NV. Sagebrush at mid-distance. Route of the California Trail used by pioneers.
Willow Creek north of Wells, NV.
Sagebrush at mid-distance.
Route of the California Trail
used by pioneers.

Courtesy & Copyright
Jim Cane, Photographer

Lupines amid sagebrush north of Wells, NV. Ruby Mountains in backgroundLupines amid sagebrush
north of Wells, NV.
Ruby Mountains in background
Courtesy & Copyright
Jim Cane, Photographer

Map delineating the Great basinMap delineating the Great basin
Courtesy Wikimedia, KMusser, Artist

The Great Basin is aptly named.  Twice the size of Kansas, it stretches from the watersheds of the Columbia and Snake rivers south to that of the Colorado, and from the crests of the Sierra Nevada and southern Cascades eastward to the Wasatch front.  The Western explorer John Fremont coined its name in 1845.  The rivers and streams of the region that Fremont had seen all ended in sinks, marshes or lakes. None flowed to the Pacific Ocean.  He confirmed this on meeting Joseph Walker at Mountain Meadows in Utah.  Walker had traveled more of the basin’s western margins, dispelling  rumors of a river traversing the Sierra Nevada.  Precipitation that falls in the Great Basin stays in the Great Basin; water leaves only as vapor.  This is the hydrographic Great Basin.

How else to view the vast region between the Rockies and the Sierra Nevada? Geologists speak of the “Basin and Range Province”, so named for its valleys and the towering ranks of north-south mountain ranges that march across the landscapes of Nevada and edges of adjacent states. Unlike the upthrust Rockies and Sierra Nevada, Earth’s crust in the Great Basin appears to be spreading, to be pulling apart. The tilted escarpments of the Wasatch front are the easternmost evidence of this crustal deformation that has built the Basin and Range Province.

Botanists delimit the Great Basin by the hardy flora that clothes this rugged landscape. Great Basin plants tolerate freezing winters and parched summers, and in the valleys, soils of varying salinity.  The so-called Sagebrush Ocean fills many of the basins, as do other shrubs, such as shadscale and greasewood.  Upslope, these give way to juniper woodlands, often mixed with piñon pine.  This floristic Great Basin reaches eastward to central Utah and the Wasatch front, beyond which trees and other plants of the Rockies make their appearance.

The boundaries of all three concepts for the Great Basin — hydrographic, geologic and floristic — largely coincide.  Each recognizes the distinctive attributes of the Great Basin that set it apart from neighboring regions.  The Great Basin is readily recognizable to the trained eye, whether looking at satellite images, river courses, or the native plant communities encountered on a simple walk.

Images: Jim Cane
Map: Courtesy Wikimedia, KMusser, Artist, licensed under Creative Commons Attribution-Share Alike 3.0 Unported
Text: Jim Cane

Additional Reading

Frémont, John Charles. 1845. Report of the exploring expedition to the Rocky Mountains in the year 1842 and to Oregon and North California in the years 1843 – 44. Printed by order of the Senate of the United States , Gales & Seaton, 693 pages. –available as a Google eBook scanned from the original published book Grayson, Donald K. 1999. The desert’s past : a natural prehistory of the Great Basin. Smithsonian Institution Press, Washington D.C., 356 pages. –an exceptionally readable, thorough and authoritative overview of the Great Basin, with many maps, photographs and illustrations.

Intermountain Regional Herbarium Network. searchable plant database representing multiple holdings of herbaria at universities in Utah and Nevada, with maps, images and more

McPhee, John. 1981. Basin and Range. Farrar, Straus, Giroux, New York. 215 pages. –the first of the author’s many engaging books about geology.

Rock Climbing

Photo Courtesy Wikimedia, Bob Protus (katsrcool) Photographer
Rock Climbing
on Potash Road, Moab, UT
Courtesy Wikimedia & Bob Protus (katsrcool), Photographer

Hi, this is Justin Lofthouse from the USU Natural Resource Interpretation Class.

Many might think that rock climbing results from a quest for adrenaline and danger. On the contrary, most rock climbers strive for a calm and controlled state of mind. Many participate in rock climbing for reasons such as solitude, adventure, self-exploration, pushing physical limits and accomplishment. The explosion of the number of people participating in rock climbing over the last decade has altered how many obtain these benefits.

As more and more people are climbing in Utah, it has become harder to find solitude and adventure. This increase in numbers has led to Federal land managers taking a closer look at the impacts caused by overuse. A strong wilderness ethic is vital to the future access of climbing areas.

In a recent poll on, the question was asked, “What are the top 10, best climbing states?” Among the replies, Utah is almost always among the top three. Canyons such as American Fork, Logan, Maple, Little and Big Cottonwood make northern Utah a top competitor. These steep technical faces offer difficult, continuous routes that push the physical realm of the sport. When southern Utah is thrown into the mix, Utah truly stands out as a gem. Places like Zion, Indian Creek, Moab, and St. George have parallel-sided cracks that split sandstone walls for hundreds of feet. These remote desert regions offer a feeling of adventure and solitude that many areas in the U.S. lack. These qualities have put Utah high on the list as a must-visit climbing destination.

Gone are the days when you and your partner were the only people climbing in an area on a weekend. As information about the amazing climbing in Utah has become readily available, people have come by hordes to explore what Utah has to offer. Although rock climbers will have to find new ways to share such a unique resource, no one is doubting that Utah truly has something special to offer when it comes to rock climbing. It will take a concentrated effort on the part of all climbers to help maintain such a wonderful resource for future generations of climbers.

For Wild About Utah, I’m Justin Lofthouse.

Image: Courtesy Wikimedia, Bob Protus (katsrcool) Photographer, licensed under Creative Commons Attribution Generic 2.0
Text: Justin Lofthouse

Sources and Additional Reading

Climbing and Canyoneering, Bureau of Land Management, Department of the Interior,

Rock Climbing, Capital Reef National Park, National Park Service,

Why is it Colder at Higher Elevations?

The age old question: Why is it Colder at Higher Elevations? Click to view a larger photograph of view from the Nebo Loop, Photo Courtesy and Copyright Lyle Bingham
It is cooler at higher altitudes
Looking Southeast from the Nebo Loop
Photo Courtesy & Copyright 2011
Lyle Bingham

Hi, this is Mark Larese-Casanova from the Utah Master Naturalist Program at Utah State University Extension.

If the old saying that “hot air rises” is true, then why is it colder at the top of a mountain? Let’s think about it in terms inflating a bicycle tire. If we were to use a bicycle pump, it would compress the surrounding air to a greater pressure as the tire is inflated. This causes air molecules to collide at a greater rate, releasing energy in the form of heat. As a result, the bicycle pump would feel warmer to the touch.

Alternatively, if a CO2 cartridge is used to inflate the tire, compressed air is released, resulting in a cooling effect as molecules rapidly move farther apart. On a warm day, the CO2 cartridge will feel cold to the touch, even frosty. So, the greater the air pressure, the warmer the temperature.

The air around us doesn’t feel like it weighs much, but it’s obvious that it has some mass whenever a helium balloon is released. The balloon, filled with a gas that is lighter than the air in our atmosphere, floats up into the sky. If we think about the amount of air sitting on top of the ground at Utah’s lowest elevation of 2,178 feet above sea level at Beaver Dam Wash in the southwest corner of the state, and compare it to Utah’s highest elevation of 13,538 feet at King’s Peak, that’s an extra 11,360 feet of air! As a result, air pressure is about one and a half times as much at Beaver Dam Wash as it is at King’s Peak. With that increased pressure at lower elevations comes increased temperatures. In fact, with every thousand feet lower in elevation, average temperatures increase about 3.5 degrees Fahrenheit.

On average, annual temperatures are about 15 degrees Fahrenheit warmer in Salt Lake City than up at the Town of Alta, just ten miles up Little Cottonwood Canyon. Even early pioneers noticed this, and decided to settle along the warmer foothills of the Wasatch Mountains. To this day, most of Utah’s population along the Wasatch Front benefits from longer growing seasons and lower heating bills, while taking advantage of higher, cooler elevations for hiking on a summer day or skiing in winter.

For Wild About Utah, I’m Mark Larese-Casanova.

Images: Courtesy and Copyright Mark Larese-Casanova
Text:     Mark Larese-Casanova

Additional Reading: Air Pressure Calculator.

If hot air rises, why is it cold in the mountains? Colorado State University Little Shop of Physics.

Joule-Thomson Effect. Princeton University.

Utah’s basement — Beaver Dam Wash is state’s lowest elevation. Deseret News. Sept. 3, 2006.–Beaver-Dam-Wash-is-states-lowest-elevation.html?pg=all

Western Regional Climate Center.

Utah’s Glacial History

Moraine with erratics, Photo Courtesy and Copyright Mark Larese-Casanova, Photographer
Moraine with erratics
Photo Courtesy & Copyright
Mark Larese-Casanova, Photographer

Little Cottonwood Canyon, Photo Courtesy and Copyright Mark Larese-Casanova, PhotographerLittle Cottonwood Canyon
Photo Courtesy & Copyright
Mark Larese-Casanova, Photographer

Hi, this is Mark Larese-Casanova from the Utah Master Naturalist Program at Utah State University Extension.

It is amazing to see just how much of an impact the large amount of snowfall from last winter still has on the annual cycle of nature. Of recent note, wildflower blooms in the mountains seem to be at least 2-3 weeks behind normal schedule. Hiking through snow in late July had me thinking about colder times when Utah’s mountains were covered with ice that flowed as glaciers.

The most recent period of glaciation in Utah occurred between 30,000 and 15,000 years ago when Utah’s climate was, on average, up to 30?F cooler. At times during this period, much of the western half of Utah was covered by Lake Bonneville, which contributed tremendous amounts of moisture as snow throughout Utah’s mountain ranges. As the snow accumulated at high elevations, its sheer weight caused it to recrystallize into ice. Once the masses of ice became heavy enough, gravity pulled them down slope, carving out characteristic U-shaped valleys.

At the top of the valleys, where the glaciers formed, we can often find large, bowl-shaped cirques. In the Wasatch Range, the Little Cottonwood Canyon glacier formed at the top, creating Albion Basin, and reached the mouth of the canyon where calved icebergs into Lake Bonneville. The Uinta Mountains contained such large glaciers that even many of the mountain peaks are rounded.

As temperatures warmed during the end of the last ice age, glaciers receded and left behind large piles of soil and rocks, known as moraines. Terminal moraines at the end of a glacier’s path, can act as natural dams to create lakes. Enormous boulders, known as glacial erratics, can often be found discarded along canyons.

While glaciers don’t currently exist in Utah, there are several permanent snowfields in shaded high mountain areas. So, if you’re feeling a little nostalgic and missing that extra long winter we had this year, you still a chance to hike up above 9,000 feet and cool your toes in the snow.

For Wild About Utah, I’m Mark Larese-Casanova.


Images: Courtesy & Copyright Mark Larese-Casanova
Text:     Mark Larese-Casanova, Utah Master Naturalist Program at Utah State University Extension.

Additional Reading:

Utah Geological Survey

Parry, William T. 2005. A Hiking Guide to the Geology of the Wasatch and Uinta Mountains. University of Utah Press.

Stokes, William Lee. 1986. Geology of Utah. Utah Museum of Natural History.