The Logan River June Bug

“Darling, I’m having a struggle with the trout. They are too much for me in the swift, rushing river. I lose ‘em. Went out yesterday… and lost two—one a large fish. The ‘June Bugs’ – a red bodied insect, as big as the biggest grasshopper you ever saw, fall from the leaves on to the river and are such large juicy mouthfuls that the trout have abundant food, and don’t care much for a fly.”1

Frederick Jackson Turner c 1890 Public Domain Courtesy Wikipedia
Frederick Jackson Turner
c 1890
Public Domain
Courtesy Wikipedia
That is an excerpt from a letter from U.S. historian and novice fly angler Frederick Jackson Turner. He was writing to his wife Caroline Mae on June 20, 1924, while visiting Utah Agricultural College in Logan. Turner didn’t know it at the time, but the large red-bodied “June Bugs” were actually salmonflies, a prehistoric-looking stonefly from the genus Pteronarcys. Turner was also unaware that his letter would become the earliest written record showing that salmonflies were once abundant in the Logan River.

Salmonflies are a type of large stonefly that live in many western rivers and are often called “rock rollers” or “shredders” because they hide under boulders and gorge themselves on leaf litter until early summer when they crawl out from under the rocks, shed their exoskeleton, and clumsily fly around hoping to bump into a mate. These bugs love cold, clean, oxygenated water, all of which are hallmarks of the Logan River. Existing records show that salmonflies were well established on the Logan River until at least 1951, after which time something wiped them out. The last time anyone saw a Pteronarcys on the Logan River was September 7, 1966, near Mendon Bridge.2

Salmon fly; Photographer unknown; 1967 Yellowstone Photo Collection Courtesy NPS and Yellowstone Association
Salmon fly;
Photographer unknown;
1967
Yellowstone Photo Collection
Courtesy NPS and Yellowstone Association
In 2001, the “Disappearance of the Salmonflies,” as it’s now known among bug enthusiasts, sparked the curiosity of Mark Vinson, former director of the Utah State University National Aquatic Monitoring Center, aka the “USU Bug Lab.” Vinson decided to compare the Logan River to nearby Blacksmith Fork River, which continues to support a healthy population of salmonflies. Vinson observed that the absence of salmonflies in the Logan River was one of the few differences between the invertebrate faunas in the two streams. He studied discharge and water temperature regimes between the two and found they were also similar and had not changed since the 1960s. He wrote, “Overall, the Logan River within Logan Canyon remains a beautiful stream and habitat, and water quality conditions have not changed much since 1960, at least not enough to prevent salmonflies from living in the river.”3 To test his observations Vinson decided to try and recolonize the Logan River with salmonflies from the Blacksmith Fork River. Between 2004 and 2007 volunteers relocated thousands of salmonflies in the hope they would once again call the Logan River home. Out of the thousands of immigrant stoneflies, Vinson only found two that survived longer than one year. The massive relocation effort was a bust, and proved that there was still something about the Logan River that these critters didn’t like.

Each semester, watershed science students at Utah State University don leaky waders and wander up Logan Canyon to conduct aquatic invertebrate sampling. I was once one of those bright-eyed students, standing in the Logan River with a kick-net and dreams of finding the long-lost Pteronarcys. I never found one. Over the years, researchers have ruled out obvious factors like water quality, stream temperature, or habitat, that might limit salmonfly reproduction on the Logan River. Chemical spills and sagebrush abatement in Logan Canyon during the 1950s may have originally contributed to the bugs’ demise, but doesn’t explain why they can’t survive for long in the river today. Of course, anglers have their own ideas about what going on, including tales of a giant Sasquatch urinating in the river somewhere near Rick’s Spring.

Even today the plot thickens. Continued aquatic invertebrate sampling by the Bug Lab has shown that salmonflies are also absent from Left Hand Fork of Blacksmith Fork River as well as upper Rock Creek.4 Incredibly, both of these streams are tributaries to the main stem Blacksmith Fork River, which is full of salmonflies. This anomaly has everyone scratching their heads. All anyone can say for certain is that some variable, biotic or abiotic, or possibly even “Sasquatch-iotic” is keeping salmonflies from populating these two tributaries. Could it be the same variable that’s keeping Frederick Jackson Turner’s “June Bugs” from reclaiming the Logan River? The answer to this question, along with whether Turner ever did land a trout, has yet to be answered.

For Wild About Utah, I’m Brad Hansen.

Footnotes:
1. Ray A. Billington, “Frederick Jackson Turner and ‘Logan’s National Summer School,’ 1924,” Utah Historical Quarterly 37, no. 3 (1969): 327.
2. Nancy A. Erman, “Occurrence and Distribution of Invertebrates in Lower Logan River” (master’s thesis, Utah State University, 1968), 17. Available online at https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1333&context=etd
3. Mark Vinson, “A short history of Pteronarcys californica and Pteronarcella badia in the Logan River, Cache County, Utah.” January 14, 2008. Available online at https://www.usu.edu/buglab/Content/Files/salmonfly%20history.pdf
4. Phone conversation with Joe Kotynek, USU Bug Lab Taxonomist, January 24, 2017.

Credits:
Photo: Courtesy Wikipedia (Public Domain) and
Photo: Courtesy NPS and Yellowstone Association
Text: Brad Hansen

Additional Reading

Logan River Salmonfly Disappearance, USU Buglab Archived Projects, https://www.usu.edu/buglab/Projects/ArchivedProjects/

Butterflies

Click to view a closer view of Andrea Liberatore's photograph of a Monarch butterfly (Danaus plexippus).  Courtesy and Copyright 2009 Andrea Liberatore, Photographer
Monarch Butterfly
Danaus plexippus
Courtesy & Copyright 2009
Andrea Liberatore, Photographer


Click to view a closer view of a Monarch butterfly caterpillar, (Danaus plexippus), Courtesy US FWS, images.fws.govMonarch Butterfly Caterpillar
Danaus plexippus
Courtesy US FWS, images.fws.gov

Click to view a closer view of a Monarch butterfly chrysalis (Danaus plexippus).  Courtesy NASA JPL, climate.nasa.gov, Plant a butterfly garden!, Climate Kids: Earth NowMonarch Butterfly Chrysalis
(Enlarged)
Danaus plexippus
Courtesy NASA JPL, climate.nasa.gov
Plant a butterfly garden!
Climate Kids: Earth Now


Click to view a closer view of Andrea Liberatore's photograph of Gene Nieminen's photograph of Monarch butterflies resting during migration.  Courtesy US FWS, Gene Nieminen, PhotographerA Rest Stop During the
Monarch Butterfly Migration
Courtesy US FWS, images.fws.gov
Gene Nieminen, Photographer

Painted Lady Butterfly, Click to view of a Painted Lady Butterfly, Courtesy US FWSPainted Lady Butterfly
Click to view of a Painted Lady Butterfly, Courtesy US FWS

Viceroy Butterfly, Click to view the butterflies page from Lee Metcalf National Wildlife Refuge, MontanaViceroy Butterfly
Click to view the butterflies page from Lee Metcalf National Wildlife Refuge, Montana

Rivaling flowers and tropical fish in their beauty, butterflies or lepidopterans, have been icons of peace and reverence for millennia. There are eight different families to which butterflies belong- at least 250 species of which are found in Utah.

Fortunately, these beauties have been inherently resilient. This resiliency comes from a host of survival strategies. Loss of habitat, misuse of Insecticides, and climate change are the primary threats to their future.

It was from early elementary school that I learned of their amazingly complex metamorphosis, commonly used as a metaphor for a transformative experience by many- merging from a destructive plant eating caterpillar to an adult plant propagating pollinator.

Two of the most celebrated butterflies are the migrating Monarchs and Painted Ladies. Their extraordinary journey involves many generations that fly unerringly to distant destinations.​
On to some remarkable survival strategies.

Called Batesian Mimicry, Viceroy’s are protected because their avian predators’ mistaken identity with the yucky tasting Monarch’s.

In order to protect themselves, many butterfly species have wing coloration and patterns for camouflage and mimicry- large eye spots which frighten predators away or mimic their host plants. Often, their caterpillars do so as well.

In Utah, there are several species of butterflies from the Gossamer-wings family whose caterpillars have a unique relationship with ants. These caterpillars secrete a liquid containing sugars and amino acids which help sustain the ants. In turn, the ants tend the caterpillars protecting them from any would-be predators similar to their relationship with aphids. A study found that “Ant-tended larvae were 4 to 12 times more likely to survive to pupation than an otherwise similar group of untended larvae.”)

Most butterfly females lay around 300 eggs in their brief existence. The few that survive inclimate weather, predation, parasitism, genetic defect, crop spraying, etc., will provide enough offspring to support adults for the next generation. If butterflies didn’t have natural enemies such as spiders, birds, earwigs, wasps, etc. to keep their population numbers in check, natural systems would soon be overwhelmed.

Most butterflies have a season–usually in the winter–where they hibernate or diapause until spring. They are tightly associated with their larval hostplants. One of the remarkable butterflies of Utah’s Mojave Desert is the Pima orange tip. Their pupae are both photoperiod sensitive and moisture sensitive. If the Mojave Desert does not get sufficient moisture somewhere in the window of time between ~January 1 and ~February 15, none of the three known hostplants of this butterfly will not germinate in sufficient numbers.

If their chrysalis doesn’t sense sufficient humidity, it will extend its diapause another year and repeat its cycle of critically analyzing humidity during the same time frame as it did a year before. In the lab, pupae of the Pima orange-tip have been known to survive up to 11 years before emerging because these critical parameters were not met.

The next time you go birding, include these wined beauties in you binocular’s view!

This is Jack Greene reading for “Wild About Utah”

Credits:

Pictures: Courtesy
      Andrea Liberatore, Photographer
      US FWS,
      NASA JPL
      US FWS, Gene Nieminen, Photographer
      US FWS, Lee Metcalf National Wildlife Refuge
Text: Jack Greene, USU Sustainability & Bridgerland Audubon Society

Additional Reading:

North American Butterfly Association, https://www.naba.org/

Butterfly Conservation, The Xerces Society for Invertebrate Conservation, https://www.xerces.org/endangered-species/butterflies

NRCS Working Lands for Monarch Butterflies, https://arcg.is/0TjueO

Sphinx Moths

Big Poplar Sphinx
Pachysphinx occidentalis
Courtesy Whitney Cranshaw
Colorado State University
bugwood.org

White-lined Sphinx
Hyles lineata
Courtesy Whitney Cranshaw
Colorado State University
bugwood.org

White-lined Sphinx Caterpillar
Hyles lineata
Courtesy Whitney Cranshaw
Colorado State University
bugwood.org

I vividly remember the first time I saw one – a small winged creature whirring from flower to flower in the evening light, its long tongue dipping for nectar within tube-shaped blooms. I was mesmerized, and struggled for a closer look.

If you’re thinking that I must have seen a hummingbird, you would be making a very common mistake. A mistake, in fact, that has given this critter one of its many nicknames. The winged wonder I saw that summer night was a sphinx moth, also called a hummingbird or hawk moth because of their large size and bird-like characteristics.

In all stages of their life, these insects are large. Caterpillars grow to a robust 4 inches in length and adult wingspans can measure more than 5 inches. Sphinx moths are also some of the fastest insects on earth and have been clocked flying at over 30 miles per hour. Their size, speed, and flying ability reflect those of the hummingbird so closely that they are commonly misidentified.

Sphinx moths are a beloved sight in many Utah gardens. However, they also hold a bit of a devious surprise. The larvae, or caterpillar, of one common species of sphinx moth are well known by vegetable gardeners. They are large and bright green with a distinctive horn near their hind end. Like the adults, these larvae go by many names, the most common being the tomato hornworm. Hornworm caterpillars, unlike their adult counterparts, are not beloved by gardeners. They are voracious beasts with the ability to strip the vegetation off a tomato or pepper plant in one day.

Aside from our garden plants, young hornworms of other species feed on a variety of vegetation including willow, poplar and cottonwood trees. Adult moths rely on a host of flowers such as columbine, honeysuckle, larkspur and evening primrose. Here in Utah you might come across one of a handful of different species in the sphinx moth family including the five-spotted hawk moth and the white-lined sphinx. Look for them in the late summer evenings as daylight begins to fade. But be sure to look twice to avoid mistaking them for something they’re not.

And the next time you find a hornworm on your tomatoes, maybe just relocate the little bugger so that you can enjoy it once metamorphosis changes the beast into a beauty.

For more information and pictures of our native sphinx moths, visit our website at www.wildaboututah.org. Thank you to Rocky Mountain Power Foundation for supporting the research and development of this Wild About Utah topic.

For the Stokes Nature Center and Wild About Utah, this is Andrea Liberatore.
Credits:

Photos: Courtesy Whitney Cranshaw, Colorado State University, Bugwood.org
            Images licensed under Creative Commons Attribution 3.0 License
Text:    Andrea Liberatore, Stokes Nature Center, logannature.org

Additional Reading:

Cranshaw, W.S. 2007. Hornworms and “Hummingbird” Moths. Colorado State University Fact Sheet 5.517. Found online at: https://www.ext.colostate.edu/pubs/insect/05517.pdf

Buchman, Steve. 2010. Pollinator of the Month: Hawk Moths or Sphinx Moths (Sphingidae). US Forest Service. Found online at: https://www.fs.fed.us/wildflowers/pollinators/pollinator-of-the-month/hawk_moths.shtml

Pot Holes and Fairly Shrimp

Aerial view of potholes in Navajo sandstone, Grand County, Utah. Photo Courtesy USGS
Aerial view of potholes in Navajo sandstone, Grand County, Utah.

Photo Courtesy USGS 

Click to view larger image of Adult Fairy Shrimp, Photo Courtesy USGSAdult fairy shrimp
Branchinecta packardi.
Photo Courtesy USGS 

Click to view larger image of Adult Vernal Pool Fairy Shrimp, Photo Courtesy USGSAdult Vernal Pool Fairy Shrimp
Branchinecta lynchi
Photo Courtesy USGS 
 

Shrimp in the desert landscape of Canyonlands National Park? Yep. You can find them, –fairy shrimp– when the rainy season arrives and turns dry, dusty potholes into water-filled rock basins brimming with life.

A surprising array of creatures relies on these potholes for life, and one of the most curious is the fairy shrimp. These unique crustaceans are found in small potholes that dot sandstone outcrops found in America’s Southwest. Their eggs maintain resilience during the dry season, and when spring rains arrive, the shrimp hatch.

There are more than 300 varieties of fairy shrimp, the most common being the Vernal Pool Fairy Shrimp. These little guys measure between a half-inch to one-and-a-half inches long as adults. They can be found anywhere ephemeral pools are present, though the majority of their population resides in California and Oregon.

Fairy shrimp vary in color depending on the menu found in their particular pool of residency, ranging from translucent, to orange, even to blue! They feature 11 pairs of legs to propel themselves upside-down, or more scientifically, ventral side-up.

They also use these incredibly helpful legs to eat unicellular algae, ciliates (sil-ee-its), and bacteria by filter and suspension feeding methods. They filter-feed by pumping water through filtration structures — located in their multi-purpose legs — thus capturing the food. They also are adept at suspension feeding by plucking food floating in the water, again, with their tentacle-like legs. They may also grab or scrape food from the surfaces of other things in their vernal pool, such as sticks and rocks.

What’s truly amazing is how fairy shrimp reproduce. They typically lay drought-tolerant eggs during the summer that over-winter in the dried sediment on the pot hole bottom and then hatch in the spring when the potholes fill with rainwater However, if drought sets in, eggs can be transferred to other pools by floating in gusts of wind or being carried by a particularly curious animal.

These eggs are tough and can withstand varying temperatures, drought, and even the test of time; eggs in laboratory settings have survived intact up to 15 years before hatching.

Under the right conditions, you can observe fairy shrimp in Canyonlands, Arches, and Death Valley national parks. Canyonlands and Arches boast at least two species of fairy shrimp: the Packard Ferry Shrimp, also known as the Rock Pool Ferry Shrimp or the Arizona Ferry Shrimp, and the Great Plains Ferry Shrimp.

Fairy shrimp hatch in the Spring, right after the potholes and vernal pools re-fill with water, so that will be your prime time to look for these interesting creatures. As travelers, you can do your part to help the fairy shrimp by leaving their vernal pools alone. Drinking water, stepping in, or touching a pool can throw off the entire mini-eco-system located in this fascinating habitat.

And remember, our fingers are very salty, so even if you’re using a gentle touch, do not put your fingers in a vernal pool, as it just might raise the salinity and throw off the dissolved oxygen percentage needed for fairy shrimp to survive.

For Wild About Utah and National Parks Traveler, I’m Kurt Repanshek.

Credits:
Image: Courtesy USGS, www.usgs.gov
Image: Courtesy and Copyright Kurt Repanshek, www.nationalparkstraveler.com
Text:     Kurt Repanshek, NationalParksTraveler.com.

Additional Reading:

https://digitallibrary.utah.gov/awweb/awarchive?type=file&item=22782

https://www.nwf.org/wildlife/wildlife-library/invertebrates/vernal-pool-fairy-shrimp.aspx

https://www.arizonafairyshrimp.com/fairyshrimp.html

https://geochange.er.usgs.gov/sw/impacts/biology/vernal/

https://www.nasa.gov/centers/dryden/news/X-Press/shrimp_spotlight.html

https://www.fws.gov/sacramento/es_kids/Vernal-Pool-Fairy-Shrimp/es_kids_vernal-pool-fairy-shrimp.htm