Utah at the Smithsonian

Utah at the Smithsonian: Click for a larger view of Diplodicus, Courtesy NMNH.si.edu, Michael Brett Surman, Photographer
Diplodicus
Courtesy NMNH.si.edu
Michael Brett Surman, Photographer

Utah at the Smithsonian: Camarasaurus, Camarasaurus lentus (Marsh), Courtesy http://www.nmnh.si.edu/, Michael Brett Surman, PhotographerCamarasaurus
Camarasaurus lentus (Marsh)

Courtesy NMNH.si.edu
Michael Brett Surman, Photographer

Utah at the Smithsonian: Smithsonian Butte, Public Domain, Courtesy National Scenic Byways Online, http://www.byways.org/ and Bureau of Land Management, John Smith, Photographer

Smithsonian Butte
Public Domain, Courtesy
National Scenic Byways Online and Bureau of Land Management.
John Smith, Photographer

Hi, I’m Holly Strand from the Quinney College of Natural Resources at Utah State University.

You don’t have to be in Utah to appreciate some of its treasures. Examples of Utah natural history can be found in museums around the globe. The last time I was in Washington DC, I explored the collections of the Smithsonian Museum of Natural History. There turned out to be a whole lot more Utah stuff than I ever imagined.

Many would consider dinosaurs to be our most illustrious museum export. Indeed a 90-foot long Utah diplodocus is the centerpiece of the museum’s Dinosaur Hall.

Not far away is an amazingly intact Camarasaurus from Utah’s Dinosaur National Monument. Its fossilized bones remained in position for over 150 million years. So beautifully and naturally preserved, it still rests on part of the sandstone block in which it was found.

Only a tiny fraction of the Museum’s collections are on display. The vast majority of its 126 million specimens are in drawers, vaults, and freezers. These items are meticulously cataloged and preserved and they serve as primary reference materials for researchers around the world. I found many 1000s of cataloged items for Utah plants, mammals and birds. Less abundant, there are still 100s of records representing specimens of our amphibians, reptiles and fish.

If you poke around in the collections databases you are sure to find something of interest. I found records of some 300 Utah plant specimens collected by Lester Frank Ward, a botanist who worked for John Wesley Powell on his western expeditions. Powell also contributed to the Smithsonian’s collection of flora and fauna. I found 8 bison skulls and one grass species, but there is probably more.

There is the skull and partial skeleton of a grizzly killed in Logan Canyon. Not Old Ephraim–his skull is here in Utah–but another one killed the year before.

In 1950, a meteorite struck a driveway just a few feet from a Box Elder County woman. A few years later, the meteorite was donated to the Smithsonian. But not before it was enhanced by local schoolchildren using crayons of various colors.

The museum’s mineral collection contains 1000s of Utah specimen, some with very strange names : I found Beaverite, Rabbitite Englishite, Coffinite, Psuedowavellite, Cristobalite, Alunite, Apatite and even Bieberite. As in Justin, I guess.

Anyway, you get the idea. The Smithsonian collections form the largest, most comprehensive natural history collection in the world. And Utah is a prime contributor of both collection items and the stories behind them.

By the way, not only are Utah things in the Smithsonian, but there are also Smithsonian things in Utah.

For example, the Henry Mountains in south central Utah were named after the first Secretary of the Smithsonian Institution Joseph Henry.

Another example is Smithsonite–or zinc carbonate–which was first identified by James Smithson in 1802. The very same Smithson left his fortune to the United States government, directing that it be used to create the Smithsonian Institution. The mineral Smithsonite has been found in Tooele and Washington Counties.

Lastly, there’s Smithsonian Butte. When the Powell Expedition traveled through the Zion area, geologist Edward Dutton named the Butte after the expedition’s most generous sponsor. Smithsonian Butte Road is a designated national backcountry byway, crossing over the Vermilion cliffs between Utah 9 and Utah 59.

For pictures, sources and links, go to www.Wildaboututah.org

For Wild About Utah, I’m Holly Strand.

Credits:

Images: Information and photos provided with the permission of the National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. N.W., Washington, DC 20560-0193. (http://www.nmnh.si.edu/)
Smithsonian Butte, Public Domain, Courtesy National Scenic Byways Online and Bureau of Land Management., John Smith, Photographer
Text: Holly Strand

Sources & Additional Reading


Panoramic Virtual Tour of the Smithsonian National Museum of Natural History (NMNH). Navigate or go directly to the Dinosaur Hall to see the diplodocus from Utah. (Fossils: Dinosaur 2)
http://www.mnh.si.edu/panoramas/index.html

Dinosaur page of the NMNH.http://paleobiology.si.edu/dinosaurs/index.html

Research and Collections of the Smithsonian NMNH.
http://www.mnh.si.edu/rc/

Access to Smithsonian NMNH Museum Collection Records databases
http://collections.mnh.si.edu/search/

Smithsonite, Museum of Natural History, Smithsonian Institute, http://www.mnh.si.edu/onehundredyears/featured_objects/smithsonite.html

Yesterday’s Camels

Yesterday’s camel
Courtesy Wikimedia,
Arthur Weasley, Artist
Licensed under
GNU Free Documentation License

Utah locations where
ancient camel bones
were discovered.
Courtesy BerkeleyMapper,
created by
Berkeley Natural History Museums,
UC Berkeley at http://berkeleymapper.berkeley.edu/_

Map data ©2013Google,
INEGI Imagery, © 2013 Terra Metrics

Hyrum Museum
Courtesy Holly Strand, Photographer

Hi, I’m Holly Strand.

There’s a small, but very engaging museum underneath the public library in Hyrum UT. This museum showcases a number of artifacts reflecting the history, customs and environment of Cache Valley. When I first visited in 2009, a couple of odd items caught my eye. One was an enormous hairball that had formed in the stomach of a Cache Valley cow. Such hairballs are called bezoars, a Persian word meaning “antidote.” Centuries ago, bezoars were believed to be a universal antidote that could neutralize any poison.

The other odd item at the museum was a camel tooth. Now a cow hairball can seem geographically appropriate as Cache Valley has plenty of cows. But why would a camel tooth be in a museum about the history of Northern Utah?

Well it turns out that this particular tooth belonged to a native Utah camel species. It most likely came from we now call Yesterday’s camel (or Western camel) which lived over 10,000 years ago. This camel was twenty percent larger than a dromedary and had a longer, narrower head and thick muscled lips. Its footpad was soft and toes were splayed, approaching the foot structure of modern camels. We don’t really know whether or not Yesterday’s camel had a hump. Remains of this Pleistocene ancestor have been found throughout the American West and in a number of UT locations.

Further, I was surprised to learn that camels are a purely North American invention, first appearing some 40- 50 million years ago. At the peak of their North American career–during the Miocene–there were 13 genera of camels. Overall, at least 95 species in 36 genera have been described for this continent alone.

The earliest camel was no more than 2 feet high. After that we find camel legs and necks grew longer to allow browsing on trees and shrub tops. One particular species (Aepycamelus giraffinus ) stood 19 feet high. Essentially this camel had become America’s giraffe on what was then a Serengeti-like plain.

Other camels resembled gazelles, and still others looked more like the camelids of today.

4 million years ago, camelids first crossed the land bridge to Eurasia . Living in Eurasian deserts, they evolved into arid land specialists with a remarkable physiological capacity for water conservation.

Other North American camelids drifted south to colonize South America. They evolved into today’s llamas, guanacos, alpacas, and vicunas—all high altitude grazing specialists.

After a few waves of migration, camels suddenly vanished from their birthplace. In fact much of the North America’s megafauna suddenly vanished in the late Pleistocene. Perhaps due to human hunting, perhaps climate change. We may never know for sure.

But one thing is clear to me now–a camel tooth definitely has a place in a Utah history museum.

For more information and sources, and a link to the Hyrum Museum, go to www.wildaboututah.org

For Wild About Utah, I’m Holly Strand.

Credits:

Image: Courtesy Wikimedia, Arthur Weasley, Photographer
          Courtesy & Copyright © Holly Strand, Photographer
          Courtesy BerkeleyMapper, created by Berkeley Natural History Museums,
          UC Berkeley at http://berkeleymapper.berkeley.edu/_
          Map data ©2013Google,
          INEGI Imagery, © 2013 Terra Metrics
Text: Holly Strand

Sources & Additional Reading


Flannery, Tim. 2001. The Eternal Frontier: An Ecological History of North America and its Peoples, NY: Grove Press.
http://www.amazon.com/Eternal-Frontier-Ecological-History-byFlannery/dp/B004XOXF06

Honey, J. J. Harrison, D. Prothero, M. Stevens, 1998. Camelidae. In:
C. Janis, K. Scott, L Jacobs, (eds.), Evolution of Tertiary Mammals of North America, Vol. 1. Terrestrial carnivores, ungulates and ungulate-like mammals, Cambridge University Press, Cambridge, UKIrwin, Robert. 2010. Camel. London : Reaktion Books
http://www.amazon.com/Evolution-Tertiary-Mammals-North-America/dp/0521619688

San Diego Zoo Global. 2009. Extinct Western Camel, Camelops hesternus
http://library.sandiegozoo.org/factsheets/_extinct/camel_extinct_western/extinctcamel.htm

Hyrum Museum
50 West Main Street
Hyrum, UT 84319
435-245-0208
https://sites.google.com/a/hyrumcity.com/hyrum-museum/

Fossil Formation

Fossilized fish
Mioplosus labracoides
Copyright 2013 Stokes Nature Center
Andrea Liberatore, Photographer

Fossilized fish
Copyright 2013 Stokes Nature Center
Andrea Liberatore, Photographer

Horn Corals from Logan Canyon
Copyright 2013 Stokes Nature Center
Andrea Liberatore, Photographer

Fossilized leaf
Copyright 2013 Stokes Nature Center
Andrea Liberatore, Photographer

Fossilized shells
Copyright 2013 Stokes Nature Center
Andrea Liberatore, Photographer

The most popular school program that the Stokes Nature Center offers is a geology lesson for second grade. I’m not sure what happens between second grade and adulthood to make our general perception of geology go from exciting to boring, but you would be amazed at how excited second graders get over rocks, and especially, over fossils.

Fossils are really quite rare – a very specific set of conditions have to be met in order to create one. Most living things decompose fairly rapidly upon death, leaving no trace of their existence behind. In order to create a fossil, this process of decomposition needs to be halted fairly rapidly, which typically means that the body is quickly covered by some kind of sediment – like sand, or soil or mud. For this reason, most fossils are found embedded in sedimentary rock. If pressure and moisture levels are just right, over the course of millions of years the organism’s molecules will slowly be replaced by minerals from the surrounding sediments – eventually turning bone into stone.

Only somewhere around one in a billion bones will make it through this process. From there the fossil has to remain intact and identifiable through eons of tectonic plate movement, earthquakes, and mountain uplift. Then, in order to be found it has to be located near enough to the earth’s surface, and in such a place where a human might come across it. Some geologists estimate that only 1 in 10,000 species that have ever lived have made it into the known fossil record, which makes me wonder what discoveries still await us.

Fortunately for us, prehistoric Utah was a place where fossilization happened with some regularity, as evidenced by places like Dinosaur National Monument and the Escalante Petrified Forest. Did you know that Utah has a state fossil? That distinction goes to the allosaurus, a predatory dinosaur that thrived during the Late Jurassic period. Numerous skeletons found in east-central Utah range in size from 10 – 40 feet in length, meaning this fearsome creature may have rivaled it’s more famous cousin Tyrannosaurus Rex for top predator status.

With such a rich fossil history, it’s not out of the question that you might stumble onto something truly amazing during a routine hike. Can you keep your find? Well, that depends on two things: the type of fossil, and whose land it was found on. On public lands in Utah, fossils of vertebrates cannot be collected, while fossils of invertebrates and plants can be. Private land owners have full rights to the fossils found on their property. With all fossils, it’s a great idea to report your find to the US Geological Survey so that your discovery can be documented for public or scientific research, display or education.

Fossil creation is an incredible phenomenon that has allowed us to glimpse the earth’s history in ways that would otherwise be completely hidden. Thanks to fossils, we can envision a prehistoric landscape filled with giant ferns, enormous dragonflies, long-necked allosauruses, and flying pterodactyls. Without the evidence in the fossil record, I doubt that even the most imaginative person among us could have envisioned such an amazing array of life.

For the Stokes Nature Center and Wild About Utah, this is Andrea Liberatore.

Credits:

Photos: Courtesy & © Stokes Nature Center, logannature.org
Text:    Andrea Liberatore, Stokes Nature Center, logannature.org

Additional Reading:

State of Utah, Utah Geological Survey, Dinosaurs & Fossils (2011) http://geology.utah.gov/utahgeo/dinofossil/index.htm

McCalla, Carole and Eldredge, Sandy (2009) What should you do if you find a fossil? Utah Geological Survey. Accessible online at: http://geology.utah.gov/surveynotes/gladasked
/gladfossil_collecting.htm

Trefil, James (1996) 101 Things You Don’t Know About Science and Nobody Else Does Either. Houghton Mifflin Company: New York, NY, http://www.amazon.com/Things-Dont-About-Science-Either/dp/0395877407

Bryson, Bill (2003) A Short History of Nearly Everything. Broadway Books. New York, NY, http://www.amazon.com/Short-History-Nearly-Everything-Illustrated/dp/0307885151

Trilobites

Asaphiscus wheeleri
Cambrian Period
House Range, Millard Co., Utah.
Copyright 2001 Val & Glade Gunther

Athabaskia bithus
Ordovician Period
House Range, Millard Co., Utah.
Copyright 2001 Val & Glade Gunther

Modocia typicalis
Cambrian Period
Wellsville Mountains, Box Elder Co., Utah.
Copyright 2001 Val & Glade Gunther

Pseudocybele altinasuta
Cambrian Period
House Range, Millard Co., Utah.
Copyright 2001 Val & Glade Gunther

Five hundred million years ago life began to flourish and change in ways not seen before on Earth. Long before people and even before the dinosaurs was the Paleozoic Era, when much of the United States, including most of Utah, could be found at the bottom of a warm, shallow sea.

One of those changes was the arrival of a class of animals called trilobites. The word ‘tri-lob-ite’ means ‘one who has three-lobes’ and refers to the way the animal can be organized into three sections, both lengthwise and widthwise. Trilobites were marine animals that occupied various niches in the sea’s shallow waters. These fascinating creatures were incredibly diverse, with individuals from more than 20,000 different species ranging in size from less than half an inch to more than two feet in length. Some species swam free in the open water, either as predators or filter-feeders, while others were restricted to crawling along the sea floor or burrowing down in the mud. Some trilobites could curl up for protection like the modern-day pill bug, with a few even exhibiting skeletal spines and bumps for added defense. Our region seems to have been a hotbed of trilobite development – the Utah Geological Survey reports that more than 500 species of trilobites have been identified from fossils found in Utah alone!

Trilobites were one of the first creatures to exhibit two important traits that eventually became standard for most animal life on earth: complex eyes and multiple appendages for the purpose of locomotion. Although trilobites went extinct around 250 million years ago, their legacy has lasted, not only in fossils, but also through a genetic link to some of their modern-day relatives, including insects, spiders, ticks, crabs and lobsters. Just like these critters, trilobites have been classified as arthropods, due to their segmented bodies, jointed legs, and hard exoskeletons. And like the arthropods we know today, trilobites went through regular molting periods, during which they grew a new exoskeleton and shed their old one. In fact, most trilobite fossils we have today are actually the fossils of molted exoskeletons and not of the animal itself.

For more information and photos of ancient Utah trilobites, visit our website at www.wildaboututah.org. Thank you to the Utah Geological Survey for content assistance, and to the Rocky Mountain Power Foundation for supporting the research and development of this Wild About Utah topic.

For the Stokes Nature Center and Wild About Utah, this is Andrea Liberatore.

Credits:

Photos: Courtesy & Copyright 2001 Val & Glade Guntherwww.geo-tools.com

Text:    Andrea Liberatore, Stokes Nature Center, logannature.org
Additional Reading:

Fortey, Richard. 2000. Trilobite! Eyewitness to Evolution. New York: Random House http://www.amazon.com/Trilobite-Eyewitness-Evolution-Richard-Fortey/dp/0375706216

Alles, David L., 2009. Trilobites (web paper). Western Washington University. Retrieved online from: http://www.biol.wwu.edu/trent/alles/Trilobites.pdf