The Colorado River Compact, Saving Water for Utah

Colorado Compact Coverage, Courtesy AZwater.gov, https://www.azwater.gov/AzDWR/StatewidePlanning/CRM/images/map_main_large.jpg
Colorado Compact Coverage
https://www.azwater.gov/AzDWR/StatewidePlanning/CRM/images/map_main_large.jpg [Feb 27, 2014]
Courtesy AZwater.gov

The Colorado River Compact, Saving Water for Utah: Hoover Dam Courtesy USBR Hoover Dam
Courtesy USBR

Hi, this is Mark Larese-Casanova from the Utah Master Naturalist Program at Utah State University Extension.

The Colorado River Compact, written into law almost a century ago, helped ensure our survival in Utah today. We all know that Utah is a dry state. In fact, Utah is the second driest state in the country, with only Nevada being drier. Our average annual precipitation varies widely, from as low as a few inches a year near St. George, to as high as 60 inches in the mountains. Since most of our water comes from mountain snow, we rely on rivers and streams to deliver it to us.

The Colorado and Green Rivers, the largest in Utah, carry water from the Rocky, Wasatch, and Uinta Mountain ranges throughout Utah and the Intermountain West. The Colorado River Basin, the area of land from which the Colorado River and its tributaries drain water, covers the eastern half of Utah, along with the western half of Colorado, almost all of Arizona, and small parts of Wyoming, New Mexico, Nevada, and California. Each of these states has a dry climate, and water from the Colorado has always been in high demand.

In the heavily populated eastern United States, the right to use water often adheres to Riparian Doctrine in which water is shared by all those who live along the body of water. However, the western US was settled at different times, and populations are more sparse. So, water rights generally follow the doctrine of Prior Appropriation. That is, the water is set aside for whoever is able to use it first. The only problem is that California was developed earlier than the other states in the basin, and therefore, as the US Supreme Court ruled in 1922, was legally entitled to more than their fair share of the water! In this case, western water law simply didn’t work. So, all 7 states in the Colorado River Basin sat down together with the US Government and negotiated the Colorado River Compact to ensure that Utah and the other Upper Basin states were entitled to as much water each year as California and the other Lower Basin states that were growing at a faster rate.

So there you have it- one key piece of legislation helping to save civilization in Utah. Except, well, the amounts of water each state is entitled to was based on an abnormally high year of water flow… and, so, there often isn’t enough water to go around… and Mexico doesn’t seem to get much water at all. OK, so the Colorado River Compact isn’t perfect, but it’s important. To ensure that we all truly have enough water, it will take compromise, conservation, and a whole lot of common sense.

For Wild About Utah, I’m Mark Larese-Casanova.

Credits:

Images: Courtesy AZwater.gov
Text:     Mark Larese-Casanova

Additional Reading:

Gelt, J. Sharing Colorado River Water: History, Public Policy and the Colorado River Compact. Water Resources Research Center. https://wrrc.arizona.edu/publications/arroyo-newsletter/sharing-colorado-river-water-history-public-policy-and-colorado-river

US Bureau of Reclamation. The Colorado River Compact. https://www.usbr.gov/lc/region/pao/pdfiles/crcompct.pdf

US Bureau of Reclamation. The Law of the River. https://www.usbr.gov/lc/region/pao/lawofrvr.html

Law of the River, Colorado River Management, State of Arizona, https://new.azwater.gov/crm/law-river

Water Education Foundation. 1922-2007: 85 Years of the Colorado River Compact. https://www.watereducation.org/western-water-excerpt/1922-2007-85-years-colorado-river-compact

James, Ian, Scientists have long warned of a Colorado River crisis, The Los Angeles Times, July 15, 2022, https://www.latimes.com/california/story/2022-07-15/scientists-have-long-warned-of-a-colorado-river-crisis

Echoes of Lake Bonneville

Echoes of Lake Bonneville: North Spring, Fish Springs National Wildlife Refuge, Utah. Courtesy Utah Geological Survey
North Spring, Fish Springs National Wildlife Refuge, Utah. Courtesy Utah Geological Survey

Leland Harris wetlands, Snake Valley, Utah, Courtesy Utah Geological SurveyLeland Harris wetlands
Snake Valley, Utah
Courtesy Utah Geological Survey

Least Chub, Courtesy and Copyright Mark C. Belk, PhotographerLeast Chub
Courtesy & © Mark C. Belk, Photographer
Echoes of Lake Bonneville

Hi, I’m Holly Strand of the Quinney College of Natural Resources at Utah State University.

Deserts are dry by definition receiving an average of less than 10 inches of precipitation a year. In Utah’s cold West Desert, this skimpy amount of moisture slakes the thirst of sagebrush, saltbush or greasewood, but not much else. However, just like the Sahara, the West Desert has its oases. In certain lowland valleys you’ll find complexes of pools and marshes. There isn’t enough rain to form these freshwater sanctuaries. The water comes from giant underground aquifers.

Underneath the West Desert, the aquifer system acts as a storehouse for runoff from the surrounding mountains. As rainwater or snow melt enters or “recharges” the aquifer system, water pressure can build up in some areas. This pressure moves water through cracks and tunnels within the aquifer, and sometimes this water flows out naturally in the form of springs.

These desert springs–and the resulting pools and marshes–permit concentrations of animals and plants not possible under normal desert conditions. You’ll find sedges, rushes cattails and many other wetland plants. Both migratory and year round birds congregate here. There are even a couple of frog species—the Colombian spotted frog and the northern leopard frog.

But most remarkable are the desert spring residents that have survived from the days when the West Desert formed the floor of giant Lake Bonneville. Surveys have revealed a number of relict snails and other mollusks that still persist from that time. Some, like the Black Canyon Pyrg exist at a single spring complex only; they are found nowhere else on earth.

Certain native fish were also left high and dry by Lake Bonneville’s recession. The least chub is a good example. Now the sole member of its genus, this 3-inch long survivor is an unassuming but attractive little minnow. It is olive-colored on top and sports a gold strip on its steel-blue sides. It swims in dense but orderly schools in either flowing or still water. It can withstand both temperature variations and high salinity. The ability to tolerate different physical conditions has undoubtedly helped the least chub survive the post-Lake Bonneville millennium. Even so, the least chub was hanging on in only six different locations until Utah’s Division of Wildlife Resources reintroduced it to several more sites within its historic range. The Division and its conservation partners are still working to reduce threats to the least chub, to other spring residents and to the spring habitats themselves.

For more information and pictures go to www.wildaboututah.org

Thanks to Chris Keleher of Utah’s Department of Natural Resources for his help in developing this Wild About Utah story.

For Wild About Utah, I’m Holly Strand.

Credits:

Theme: Courtesy & Copyright Don Anderson Leaping Lulu
Image: Least Chub, Mark C. Belk, Professor of Biology, Brigham Young University
Image: Wetlands, Courtesy Utah Geological Survey https://geology.utah.gov/
Text: Holly Strand, Quinney College of Natural Resources at Utah State University

Sources & Additional Reading

Bailey, Carmen L., Kristine W. Wilson Matthew E. Andersen. 2005. CONSERVATION AGREEMENT AND STRATEGY FOR LEAST CHUB (IOTICHTHYS PHLEGETHONTIS) IN THE STATE OF UTAH Publication Number 05-24 Utah Division of Wildlife Resources a division of Utah Department of Natural Resources https://wildlife.utah.gov/pdf/fish/least_chubs.pdf

Jones, Jennifer, Rich Emerson, and Toby Hooker. 2013. Characterizing Condition in At-risk
Wetlands of Western Utah: Phase I UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources,https://geodata.geology.utah.gov/pages/view.php?ref=8364

Nature Serve entry for Least Chub: https://explorer.natureserve.org/servlet/NatureServe?searchName=Iotichthys+phlegethontis

Hanks, Joseph H. and Mark C. Belk. 2004. Threatened fishes of the world: Iotichthys phlegethontis Cope, 1874 (Cyprinidae) in Environmental Biology of Fishes, Vol. 71. N. 4., Kluwer Academic Publishers. https://dx.doi.org/10.1007/s10641-004-1030-x

Sigler W. F. & J. W. Sigler. 1996. Fishes of Utah, A Natural History. University of Utah Press, Salt Lake City. 375 pp. https://www.amazon.com/Fishes-Utah-A-Natural-History/dp/0874804698

Wasatch Front Canyons Geologic Tour, Virtual Tour created from Published Booklet (pdf) Geologic Guide to the Central Wasatch Front Canyons, Utah Geological Survey, State of Utah, https://utahdnr.maps.arcgis.com/apps/MapTour/index.html?appid=5cf1570b998346d98478a5abd50bf096

Geologic guides to the central Wasatch Front Canyons, Utah Geological Survey, 2005, https://geology.utah.gov/popular/utah-landforms/virtual-tour-central-wasatch-front-canyons/ [updated January 2024]

Til Death Do Us Part

Tundra Swan Pair
Cygnus columbianus
Courtesy US FWS
Tim Bowman, Photographer

Hi, I’m Holly Strand.

Each year we celebrate Valentine’s Day by expressing our love and devotion to a significant other. While humans are the only species that actually celebrate it, we aren’t the only animals who bond together as couples. Monogamy–or long term pair bonding as animal behaviorists call it–is practiced by over 90 % of birds. Along with a modest number of mammals, including wolves, beavers, voles and gibbons. Even a few fish pair up.

Monogamy may have evolved for different reasons among different groups of animals. For some, female dispersal may have played a role. If females are few and far between–as is the case with white tail ptarmigans–there is a tendency to pair up. Perhaps additional potential mates are too far away too bother. For males, monogamy can save a lot of time and energy. Monogamous males don’t have to fight over females or bother with first time courtship rituals. And by closely guarding a single female , males can protect their genetic investment.

There are advantages for females too. With a mate, you can get a little assistance around the nest or den. Male partners can help incubate eggs, guard against predators and help feed the kids. The fact that male and females are equally suited to care for chicks may explain why monogamy is so much more common among birds. The male improves his chances for reproductive success by investing in just one female’s little ones. The situation is different in mammals. Mammal males just can’t step in and help as much with gestation and lactation. So perhaps that’s why only 3% of mammal species form pair bonds.

The offspring of monogamous pairs tend to be pretty helpless at birth. Having two caregivers means that the you can take more time to mature. This long, slow development leads to larger brain sizes. Humans demonstrate this phenomenon very well as we parent our children longer than any other species on earth!

The tundra swan is Utah’s best example of monogamy in the wild. Young tundra swans date around a bit when they are young, but they eventually settle down with a single mate for life. They build and defend a nest together and raise the kids. But then they stick together the rest of the year as well. Greetings and courtship rituals such as head bobbing and dipping and ritual bathing strengthen their commitment toward each other.

You can see these beautiful swans in massive numbers twice a year when they migrate through Utah. Tens of thousands of them stop by the Great Salt Lake on their way to either the Arctic tundra or to central California.

For sources, pictures, and archives of past programs, go to www.wildaboututah.org

For Wild About Utah, I’m Holly Strand.

Credits:

Image: Courtesy US FWS, images.fws.gov
Text: Holly Strand

Sources & Additional Reading

Limpert, R. J. and S. L. Earnst. 1994. Tundra Swan (Cygnus columbianus), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: https://bna.birds.cornell.edu/bna/species/089

Mocka, Douglas, and Masahiro Fujiokab. 1990. “Monogamy and long-term pair bonding in vertebrates” Trends in Ecology & Evolution. Volume 5, Issue 2, February 1990, Pages 39–43

Reichard, Ulrich and Christoph Boesch. 2003. Monogramy: mating Strategies and Partnerships in Birds, Humans and Other Mammals. Cambridge University Press.

Schultz, Susanne and Robin I.M. Dunbar. 2010. “Bondedness and sociality”
Behaviour, Volume 147, Number 7, 2010 , pp. 775-803(29).

Schultz, Susanne and Robin I.M. Dunbar. 2010. Social bonds in birds are associated with brain size and contingent on the correlated evolution of life-history and increased parental investment. Biological Journal of the Linnean Society. Volume 100, Issue 1, pages 111–123, May 2010.

Those Howling East Winds

Those Howling East Winds: Normal Diurnal Wind Shift Along the Wasatch Front, Courtesy Utah Division of Air Quality
Normal Diurnal Wind Shift
Along the Wasatch Front
Courtesy Utah Division of Air Quality

Those Howling East Winds: Air Pressure at the Surface, A Bit of a Blow..., Utah Climate Notes, January 2012, Courtesy Utah Climate Center, Utah State University Air Pressure at the Surface, 1 Dec 2011
Blue=Low Pressure, Red=High Pressure
The spacing of the lines is a measure of the pressure gradient: the closer the lines, the higher the pressure gradient. https://climate.usurf.usu.edu/news/010512Utah%20Climate%20Update%20(Jan%2012).pdf[Feb 6, 2014]
Read: A Bit of a Blow…
Courtesy Utah Climate Center, Utah State University

Wind is inevitable on a spinning planet with an atmosphere and a sun. At our latitude, westerlies prevail, but east winds do occur now and then. Locally, canyons daily exhale denser, cooler mountain air that drains into valleys. In Logan, trees blown by these canyon winds tilt westward. Occasionally, though, the whole Wasatch front is whipped by howling gales from the east, leaving behind shredded shingles, snapped tree limbs and rolled tractor-trailers. These forceful east wind events have a regional weather origin that is intensified by local topography.

It begins with a strong high-pressure cell parked over southwestern Wyoming.  It’s descending dry air circulates clockwise. Somewhere to the south or southwest, a low-pressure cell is needed.  The strong air pressure gradient between high and low generates a wind that races westward from Wyoming. The surging wind pours over the entire Wasatch front like water over a flat boulder in rapids.  These winds then plunge down slope, blowing quickest where the descent is long, steep, and unobstructed. The down rushing air slams onto the flat benches and valley floors.  In November 2011, such winds ripped Centerville with 100 MPH gusts.

Where these so-called mountain wave events blow regularly they often have names.  The mistral and foehn winds howl down from the Alps, chinooks  race down the Rocky Mountain Front Range, and the Santa Anas blast Southern California. The steep altitudinal descent of these parched winds compressively heats the air. A spark or flame soon transforms to a raging wildfire when fanned by a drying foehn or Santa Ana wind.  Europe’s foehns are also known to spark short tempers and stress.

Perhaps the sporadic easterly gales that lash the Wasatch Front and Cache Valley deserve an evocative name too.  For now, you at least know the answer to what’s blowin’ in the east wind.

Thanks to Martin Schroeder at the Utah Climate Center for insights and the stream boulder analogy

This is Linda Kervin for Bridgerland Audubon Society.

Credits:
Diurnal Utah Winds Image: Courtesy Utah Division of Air Quality
Surface Air Pressure 1 Dec 2011 Image: Courtesy Utah Climate Center, USU
Text: Jim Cane

Additional Reading:

Martin Price, Alton Byers, Donald Friend, Thomas Kohler, Larry W. Price. 2013. Mountain Geography: Physical and Human Dimensions. Univ of California Press. pages 71­74. https://www.amazon.com/Mountain-Geography-Physical-Human-Dimensions/dp/0520254317

Mesmerizing live wind map of US at:  https://hint.fm/wind/

Forecast of damaging east winds along the Wasatch Front, end of November 2011, https://www.ksl.com/?sid=18282965

How Chinooks Occur, Wikipedia, https://en.wikipedia.org/wiki/Chinook_wind#How_Chinooks_occur